(4x^2-16x/1-2x+x^3) :(3x+6/1-x)
xin moi nguoi giup e
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)(3x-1)(2x+7)-(x+1)(6x-5)=16
=>\(6x^2-2x+21x-7-6x^2-6x+5x+5\)=16
=>18x-2=16
=> 18x=18
=> x=1
c)3(2x-1)-5(x-3)+6(3x-4)=24
<=>6x-3-5x-15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=\(\frac{36}{19}\)
d)2x(5-3x)+2x(3x-5)-3(x-7)=3
<=>10x-6x2+6x2-10x-3x-21=3
<=>-3(x-7)=3
<=>21-3x=3
<=>-3x=-18
<=>x=6
a.\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\Leftrightarrow6x^2-\left(6x^2-2x-6\right)-1=0\)
\(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)
b. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\Leftrightarrow x^2+4x-21-\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow-16=0\)
Vậy không có x thỏa mãn.
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
\(\left(\frac{2}{3}.x+\frac{5}{6}\right).\left(\frac{3}{4}.x-\frac{27}{8}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}.x+\frac{5}{6}=0\\\frac{3}{4}.x-\frac{27}{8}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{2}{3}.x=\frac{-5}{6}\\\frac{3}{4}.x=\frac{27}{8}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{4}\\x=\frac{9}{2}\end{cases}}\)
Vậy \(x=\frac{-5}{4}\) hoặc \(x=\frac{9}{2}\).
Học tốt
\(\left(\frac{2}{3}.x+\frac{5}{6}\right).\left(\frac{3}{4}.x-\frac{27}{8}\right)=0=>\orbr{\begin{cases}\left(\frac{3}{4}.x-\frac{27}{8}\right)=0\\\left(\frac{2}{3}.x+\frac{5}{6}\right)=0\end{cases}}\)
\(\orbr{\begin{cases}\frac{2}{3}.x=0-\frac{5}{6}\\\frac{3}{4}.x=0+\frac{27}{8}\end{cases}}=>\orbr{\begin{cases}\frac{2}{3}.x=-\frac{5}{6}\\\frac{3}{4}.x=\frac{27}{8}\end{cases}}=>\orbr{\begin{cases}x=-\frac{5}{6}:\frac{2}{3}\\x=\frac{27}{8}:\frac{3}{4}\end{cases}}=>\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{9}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{9}{2}\end{cases}}\)
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.