K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

b: Xét ΔDKO vuông tại K và ΔBHO vuông tại H có

OD=OB

\(\widehat{DOK}=\widehat{BOH}\)

Do đó: ΔDKO=ΔBHO

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có 

AD=CB

\(\widehat{ADK}=\widehat{CBH}\)

Do đó: ΔADK=ΔCBH

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

Biết hết không ạ em đang cần gấp.

 

29 tháng 6 2019

a) Xét hai tam giác vuông ADH và BCK có:

AD = BC (tính chất hình bình hành)

B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)

Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)

⇒⇒ AH = CK (1)

Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)

⇒⇒ AK = CH (2)

Từ (1) và (2) suy ra: AHCK là hình bình hành

b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)

AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC

Vậy H, O, K thẳng hàng.

A B D C O H K

P.s:Mìh vẽ hình hơi xấu ;))

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAM và ΔOCP có

góc OAM=góc OCP

OA=OC

góc AOM=góc COP

=>ΔOAM=ΔOCP

=>OM=OP

=>O là trung điểm của MP

Xét ΔOQD và ΔONB có

góc ODQ=góc OBN

OD=OB

góc QOD=góc NOB

=>ΔOQD=ΔONB

=>OQ=ON

=>O là trung điểm của QN

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

=>MNPQ là hbh