K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

a) a = (2009+20092)+(20093+20094)+...+(20099+201010)

=2009(2009+1)+20093(2009+1)+...+20099(2009+1)

a=2010(2009+20093+...+20099) chia hết cho 2010.

b) Gọi d=ƯCLN(3n+5,2n+3)

=>3n+5,2n+3 ⋮ d

=>2(3n+5) - 3(2n+3) ⋮ d

=>1 ⋮ d => d=1 => 3n+5 và 2n+3 là 2 số nguyên tố cùng nhau.

=>Phân số \(\frac{3n+5}{2n+3}\) luôn luôn tối giản với mọi STN n.

26 tháng 3 2020

b

giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?

  • Câu hỏi của Nguyễn Thị Thu Hải
  • Mới nhất
  • Chưa trả lời
  • Câu hỏi hay
Nguyễn Thị Thu Hải Nguyễn Thị Thu Hải 2 giờ trước (14:18)

a=1+2^2/3^2+2^2/5^2+2^2/7^2+...+2^2/2009^2

So sanh a với 3

giúp tớ với kaka :(((

5 tháng 3 2018

A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)

A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]

A=2009.2010+2009^3.2010+...+2009^9.2010

A=2010(2009+2009^3+2009^5+......+2009^9)  chia het cho 2010

5 tháng 3 2018

Ta có :

\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)

Tổng A có số số hạng là :

( 10 - 1 ) : 1 + 1 = 10 ( số hạng )

Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả 

\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)

\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)

\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)

\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)

Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)

Vì \(2010⋮2010\)nên \(A⋮2010\)

Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)

21 tháng 2 2018

K = (2009 + 20092 + 20093 + 20094 + .... + 200910

K = [(2009 + 20092) + (20093 + 20094) + ... + (20099 + 200910)]

K = [4038090 + 20092(2009 + 20092) + ... + 20098(2009 + 20092)]

K = [4038090 + 20092.4038090 ... + 20098. 4038090]  ⋮ 2010

(4038090 ⋮ 2010)

=> K ⋮ 2010 (đpcm)

21 tháng 2 2018

Bạn vào đây nha:

Câu hỏi của Sakuraba Laura

Chúc bạn học giỏi!

27 tháng 3 2018

a) Tổng C có số số hạng là :

( 20 - 1 ) : 1 + 1 = 20 ( số )

Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả 

Ta có :

 \(C=2009+2009^2+2009^3+......+2009^{20}\)

\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)

\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)

\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)

\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)

Vậy \(C⋮2010\left(ĐPCM\right)\)

b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)

Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)

Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)

Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)

Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)

Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)

Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)

\(\Rightarrow a+2=210\)

\(\Rightarrow a=210-2\)

\(\Rightarrow a=208\)

Vậy \(a=208\)

28 tháng 3 2018

a=208

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

5 tháng 12 2017

1/ A= 71+72+73+74+75+76\(⋮\)57

Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)

=7x(1+7+72)+74x(1+7+72)

=7x57+74x57

=57x(7+74)\(⋮\)57

4n+17

Vậy A \(⋮\)57

Phần 2 thiếu đề bài

3/ 4n+17\(⋮\)2n+3

=>4n+17-2x(2n+3)\(⋮\) 2n+3

=>4n+17-4n-6\(⋮\) 2n+3

=>11\(⋮\)2n+3

=>2n+3 \(\varepsilon\)Ư(11)

mà Ư(11) ={1;11}

Vì 2n+3 là số tự nhiên =>2n+3 =11

=>2n=11-3

=>2n=8

=>n=8 :2

=> n=4 

Vậy n=4 thì ...

4/ 9n+17 \(⋮\)3n+2

=>9n+17-3x(3n+2)\(⋮\)3n+2

=>9n+17-9n-6\(⋮\)3n+2

=>11\(⋮\)3n+2

=>3n+2 \(\varepsilon\)Ư(11)

mà Ư(11)={1;11}

Vì 3n+2 là số tự nhiên => 3n+2>2

=>3n+2 =11

=>3n=11-2

=>3n=9

=>n=9:3

=>n=3

Vậy n=3 thì ...

4 tháng 4 2015

A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)

A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}

A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]

Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5. 

5 tháng 4 2015

A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]

   = 1 + 1 + 1 + ... + 1 (1005 số 1)

   = 1005 chia hết cho 5