Tìm x, y thuộc Z thỏa mãn: x^2 = -2(y^6 - xy^3 - 32) giúp mk vs
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HL
0
R
6
NN
4
30 tháng 5 2017
Luôn có \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-x\right)^2\ge0\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge xy+yz+xz\ge-1\)
\(P_{min}=-1\)dấu "=" sảy ra khi (x,y,z) là hoán vị của 3 phần tử (0,0,-1)
30 tháng 5 2017
Ta có:
\(xy+yz+zx=-1\)
\(\Leftrightarrow2\left(xy+yz+zx\right)=-2\)
\(\Leftrightarrow2\left(xy+yz+zx\right)+x^2+y^2+z^2=-2+x^2+y^2+z^2\)
\(\Leftrightarrow P=x^2+y^2+z^2=\left(x+y+z\right)^2+2\ge2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-1\end{cases}}\)
Chỉ ra 1 bộ số thỏa mãn cái đấy nhé là: \(\hept{\begin{cases}x=0\\y=1\\z=-1\end{cases}}\)
OS
0
PQ
0