K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

30 tháng 9 2020

A = 2 + 22 + ... + 2120

Chứng minh chia hết cho 3

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 2119 + 2120 )

= 2( 1 + 2 ) + 23( 1 + 2 ) + ... + 2119( 1 + 2 )

= 2.3 + 23.3 + ... + 2119.3

= 3( 2 + 23 + ... + 2119 ) chia hết cho 3 ( đpcm )

Chứng minh chia hết cho 7

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 2118 + 2119 + 2120 )

= 2( 1 + 2 + 22 ) + 24( 1 + 2 + 22 ) + ... + 2118( 1 + 2 + 22 )

= 2.7 + 24.7 + ... + 2118.7

= 7( 2 + 24 + ... + 2118 ) chia hết cho 7 ( đpcm )

Chứng minh chia hết cho 15

A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 2117 + 2118 + 2119 + 2120 )

= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 2117( 1 + 2 + 22 + 23 )

= 2.15 + 25.15 + ... + 2117.15

= 15( 2 + 25 + ... + 2117 ) chia hết cho 15 ( đpcm )

30 tháng 9 2020

1) Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3

2) Ta có: \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)

\(A=7\left(2+2^4+...+2^{118}\right)\) chia hết cho 7

3) Ta có: \(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\)

\(A=15\left(2+2^5+...+2^{117}\right)\) chia hết cho 15

15 tháng 12 2014

A=2+2^2+2^3+...+2^120

A=(2+2^2+2^3)+(2^4+2^5+2^6)...+(2^118+2^119+2^120)

A=2.(1+2+2^2)+2^4(1+2+2^2)+2^118(1+2+2^2)

A=2.7+2^4.7+...+2^118.7

Ta có A=2.7+2^4.7+...+2^118.7 chia hết cho 7

=>A=2+2^2+2^3+...+2^120 chia hết cho 7

15 tháng 12 2014

A=2+2^2+...+2^120

=(2+2^2+2^3+2^4+2^5+2^6)+(2^7+2^8+2^9+2^10+2^11+2^12)+.....+(2^120+2^119+2^118+2^117+2^116+2^115)

=2(1+2+2^2+2^3+2^4+2^5)+2^7(1+2+2^2+2^3+2^4+2^5)+.....+2^115(1+2+2^2+2^3+2^4+2^5)

=2*63+2^7*63+...+2^115*63

=63(2+2^7+...+2^115) Vì 63 chia hết cho 7=>63(2+2^7+..+2^115) chia hết cho 7

=>A chia hết cho 7

27 tháng 10 2019

ko biết

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

8 tháng 3 2022

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)