K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Giả sử a > b

Gọi d = ƯCLN(a,b) (d thuộc N*)

=> a = d.m; b = d.n [(m;n)=1; m > n)

=> BCNN(a;b) = d.m.n

Ta có: BCNN(a;b) + ƯCLN(a;b) = 15

=> d.m.n + d = 15

=> d.(m.n + 1) = 15

=> 15 chia hết cho d

Mà d thuộc N* => d∈{1;3;5;15}

+ Với d = 1 thì m.n + 1 = 15 => m.n = 14

Mà (m;n)=1; m > n =>\(\orbr{\begin{cases}m=14;n=1\\m=7;n=2\end{cases}\Leftrightarrow\orbr{\begin{cases}a=14;b=1\\a=7;b=2\end{cases}}}\)

+ Với d = 3 thì m.n + 1 = 5 => m.n = 4

Mà (m;n)=1; m > n => \(\orbr{\begin{cases}m=4\\n=1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=12\\b=3\end{cases}}}\)

+ Với d = 5 thì m.n + 1 = 3 => m.n = 2

Mà (m;n)=1; m > n => \(\orbr{\begin{cases}m=2\\n=1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=10\\b=5\end{cases}}}\)

+ Với d = 15 thì m.n + 1 = 1 => m.n = 0, vô lý

Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (14;1) ; (1;14) ; (7;2) ; (2;7) ; (10;5) ; (5;10)

chúc bạn họctốt

31 tháng 12 2024

KO BIẾT


31 tháng 1 2022

UKM

^6^7g^7*(KHV C GTGFCCGttedx

8 tháng 12 2015

a) goi hai so la a ; b va a >b

vi UCLN(a,b)=18=>a=18k            ;       b=18q       (trong do UCLN (k,q)=1 va k>q)

=>a+b=162

18k+18q =162

18(k+q)=162

k+q=9

ta co bang sau   

 

k1234
q8765
a18365472
b14412610890

vay ...........

   
    
    

 

29 tháng 10 2016

21453 

52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000