K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

N D B A' A O C

a)  Vẽ OM \(\perp\)BC  ( M \(\in\)BC ) 

OM cắt DE tại N 

DE// BC ( gt ) có ON \(\perp\)DE ,tứ giác BCDE là hình thang 

OM ​​\(\perp\)BC => M là trung điểm của BC 

ON\(\perp\)DE => N là trung điểm của DE 

MN là trục đối xứng của hình thang cân=> đpcm 

d)  1)BC //DE ( dt) , AD \(\perp\)BC ( gt ) 

=> AD\(\perp\)DE

góc ADE = 90 độ => AE là đường kính của đường tròn ( O) 

=> A,O,E  thẳng hàng ( đpcm ) 

2) BE = CD ( BECD là hình thang cân ) 

AE là đường kính nên góc ABE  = 90 độ 

Tam giác ABE vuông tại E ,theo định lí PI-ta- go có : 

AB2 + BE2 = OE2

AB2 + CD2 =( 2.R)2 

AB2 + CD2 =4R2 

Chứng minh tương tự ,ta có : AC2 + BD2 =4R2 

Ta có : AB2 + BD2 + CD2 + AC2 = 8.R2

26 tháng 3 2020

Câu a)

Vì DE=BC nên: sđ cung BD=sđ cung CE

\(\Rightarrow\)sđ cung BE=sđ cung CD

\(\Leftrightarrow\widehat{BCE}=\widehat{DBC}\)

Tứ giác BCED có DE//BC nên BCED là hình thang

Mà \(\widehat{BCE}=\widehat{DBC}\Rightarrowđpcm\)

Câu b)

Vì ABDC là tứ giác nội tiếp nên: \(\widehat{ABA'}=\widehat{CDA'}\)

Xét \(\Delta ABA'\)và \(\Delta CDA'\)

+\(\widehat{ABA'}=\widehat{CDA'}\)

+\(\widehat{AA'B}=\widehat{CA'B}\)

Do đó 2 tam giác đó đồng dạng 

\(\Rightarrow\frac{AA'}{A'C}=\frac{A'B}{A'D}\)\(\Rightarrowđpcm\)

Câu c)

Gọi giao BH với AC là B'

Tam giác BHD có BA' vừa là đường cao và vừa là đường trung tuyến 

nên tam giác BHD cân tại B

\(\Rightarrow\widehat{BHD}=\widehat{BDA}\)

\(\Leftrightarrow\widehat{AHB'}=\widehat{BDA}\)

\(\Leftrightarrow\widehat{AHB'}+\widehat{DAC}=\widehat{BDA}+\widehat{DAC}=\widehat{BDA}+\widehat{DBC}=90^o\)

\(\Leftrightarrow BB'\perp AC\)

Tam giác ABC có H là giao 2 đường cao AA' và BB'

Vậy H là trực tâm của tam giác ABC

Câu d)

Ý 1:

Có: DE//BC mà AD vuông góc BC

Suy ra: AD vuông góc DE

nên tam giác ADE vuông tại D

Suy ra: AE là đường kình đường tròn ngoại tiếp tam giác ADE

Vậy A,O,E thẳng hàng

Ý 2:

Vì BCED là hình thang cân nên:

\(\hept{\begin{cases}BE=CD\\BD=CE\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}BE^2=CD^2\\BD^2=CE^2\end{cases}\Leftrightarrow}\hept{\begin{cases}CD^2+AB^2=BE^2+AB^2=AE^2=4R^2\\AC^2+BD^2=AC^2+CE^2=AE^2=4R^2\end{cases}}\)

Cộng lại sẽ tích đc tổng đó theo R

Hình vẽ:(không biết nó có hiện ra không nên bạn thông cảm)

image.png

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

a: góc INC+góc IMC=180 độ

=>INCM nội tiếp

b: Xét ΔINB vuông tại N và ΔIMA vuông tại M có

góc NIB=góc MIA

=>ΔINB đồng dạng với ΔIMA

=>IN/IM=IB/IA

=>IN*IA=IM*IB

c: góc AIH=góc BIN=góc BCA

=>góc AIH=góc AHI

=>AI=AH

a: góc ACM=1/2*sđ cung AM=90 độ

b: góc ADB=góc AEB=90 độ

=>ABDE nội tiếp

10 tháng 3 2022

Ta có :

Do BD và CE là các đường cao nên

suy ra góc BEC = góc BDC =90 độ

Xét tứ giác BCDE,có:

góc BEC=góc BDC

vậy BCDE là tứ giác nội tiếp(đpcm)