tính 3S + 2^2015 biết rằng
S = 1-2 +2^2 - 2^3 +........+2^2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ biết câu a thui nha thông cảm
3S+2 =22017
Vậy là chứng minh được rồi ^ ^
Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé
a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)
\(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)
\(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)
Mà S = ( 4S - S) :3
\(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)
\(=\frac{\left(2^{2017}-2\right)}{3}\)
=> 3S + 2 \(=3\cdot\frac{2^{2017}-2}{3}+2\)
\(=\frac{3\left(2^{2017}-2\right)}{3}+2\)
\(=\frac{2^{2017}-2}{1}+2\)
\(=2^{2017}-2+2\)
\(=2^{2017}\)
Mà 22017 là một lũy thừ của 2
=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)