K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020
https://i.imgur.com/YeWSpFU.jpg
16 tháng 2 2020

Áp dụng bđt Cauchy - Schwarz dạng Engel:

\(VT=\frac{1}{4a}+\frac{4}{4b}+\frac{4}{4c}\ge\frac{\left(1+2+2\right)^2}{4\left(a+b+c\right)}=\frac{25}{4}\)

(Dấu "=" xảy ra khi \(a=\frac{1}{5};b=c=\frac{2}{5}\))

Ai muốn vào team tui không

Xin lỗi rất nhiều vì đã làm sai quy luật, nội quy ạ

Mong mọi người đừng chửi

Học Tốt

NV
22 tháng 2 2020

Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)

15 tháng 1 2018

Ta có: \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\Leftrightarrow\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}-\frac{1}{25}\ge0\)

\(\Leftrightarrow\frac{25a^2+25b^2-12a^2-25ab-12b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13a^2-25ab+13b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a^2-2.\frac{25}{26}ab+\frac{625}{676}b^2\right)+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a-\frac{25}{26}b\right)^2+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

Do a, b > 0 nên cả tử và mẫu của phân thức bên vế trái đều lớn hơn 0.

Vậy bất đẳng thức cuối là đúng hay \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\forall a,b>0;a\ne-\frac{3b}{4};b\ne-\frac{4b}{3}\)

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

1 tháng 4 2017

áp dụng bất đẳng thức cô si cho 4 số dương ta có :

\(a^4+1+1+1\ge4\sqrt[4]{a^4\cdot1\cdot1\cdot1}=4a\)

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

11 tháng 3 2021

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)

\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).

Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).