K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 3x+4y=2

=>4y=-3x+2

\(\Leftrightarrow y=\dfrac{-3}{4}x+\dfrac{1}{2}\)

vậy: Hệ số góc là -3/4

b: Để hai đường song song thì \(\left\{{}\begin{matrix}m^2-1=-\dfrac{3}{4}\\m< >\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

17 tháng 1 2019

Đáp án B

Độ dài véc tơ v →  bé nhất đúng bằng khoảng cách h giữa d và d' . h chính là khoảng cách từ M ∈ d  tới N ∈ d ' sao cho M N → ⊥ u → 4 ; − 3 trong đó u → là VTCP của cả d và d' .Và khi đó:  v → = M N →

Chọn M − 3 ; 2 ∈ d . Ta cần tìm N t ; − 6 − 3 t 4 ∈ d ' sao cho:

M N → t + 3 ; − 14 − 3 t 4 ⊥ u → 4 ; − 3

⇔ 4 t + 12 + 42 + 9 t 4 = 0 ⇔ t = − 18 5

⇒ M N → = − 3 5 ; − 4 5

12 tháng 5 2019

Đáp án B

19 tháng 3 2021

1,\(\overrightarrow{n}\)d=(2;-4)   

d:  2(x+1)-4(y-1)=0⇔2x-4y+6=0

2) AM nhỏ nhất khi AM vuông góc với D

\(\overrightarrow{n}\)AM=(4;2)

AM:  4(x+1)+2(y-1)=0⇔4x+2y+2=0

M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1

                                                                        4x+2y=-2

⇒M(-1/2;0)

20 tháng 3 2021

cảm ơn nà

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

2 tháng 8 2019

Đáp án là C 

26 tháng 4 2019

1)

trục Ox là đt' y=0   

để d//với Ox làm bình thường

a=a'<=>m-1=0<=>m=1

và b=b'<=>-n khác 0<=>n khác 0

Vậy  m=1 và n khác 0 là giá trị cần tìm

2)

phương trình đường thẳng d :y=(m-1)x-n

do d đi qua A(1;-1) va có hệ số góc =-3 nên ta có a=-3;x=1;y=-1

thay vào hàm số d ta được -1=-3.1-n   <=>n=-2

vậy hàm số có dạng y=-3x-2

29 tháng 5 2015

a) Trục Ox là đường thẳng y = 0

Để d // Ox <=> m - 1 = 0 và n \(\ne\) 0

<=> m = 1 và n \(\ne\) 0

b) d có hệ số góc = 3 => m - 1 = 3 <=> m = 4

=> d có dạng y = 3x + n

A (1; -1) \(\in\) d => yA = 3 xA + n <=> - 1 = 3.1 + n  <=> n = -4

Vậy d có dạng y = 3x - 4

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)