Câu 87*: Biến đổi ab \(\sqrt{\dfrac{a}{3b}}\) - a2\(\sqrt{\dfrac{3b}{a}}\)= m\(\sqrt{3ab}\)với a > 0 , b > 0 thì m bằng:
A . \(\dfrac{-2a}{3}\); B . \(\dfrac{2a}{3}\); C.\(\dfrac{-2}{3}\); D.3a.
giải hộ mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a,b >0 CMR (\(\sqrt{a}\)+\(\sqrt{b}\))(\(\dfrac{1}{\sqrt{a+3b}}\)+\(\dfrac{1}{\sqrt{3b+a}}\)) ≤2
Chắc đề ghi nhầm ngoặc sau (2 mẫu kia thực chất giống nhau, lẽ ra phải là \(\dfrac{1}{\sqrt{a+3b}}+\dfrac{1}{\sqrt{3a+b}}\)
\(VT=\sqrt{\dfrac{a}{a+3b}}+\sqrt{\dfrac{a}{3a+b}}+\sqrt{\dfrac{b}{a+3b}}+\sqrt{\dfrac{b}{3a+b}}\)
\(=\sqrt{\dfrac{a}{a+b}.\dfrac{a+b}{a+3b}}+\sqrt{\dfrac{1}{2}.\dfrac{2a}{3a+b}}+\sqrt{\dfrac{1}{2}.\dfrac{2b}{a+3b}}+\sqrt{\dfrac{b}{a+b}.\dfrac{a+b}{3a+b}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a+b}{a+3b}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{2a}{3a+b}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{2b}{a+3b}\right)+\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{a+b}{3a+b}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{a+b}{a+b}+\dfrac{a+3b}{a+3b}+\dfrac{3a+b}{3a+b}\right)=2\)
Dấu "=" xảy ra khi \(a=b\)
a) `=(\sqrt3)/(\sqrt(2a)) = (\sqrt(6a))/(2a)`
b) `=(\sqrt(3ab))/(\sqrt2) = (\sqrt(6ab))/4`
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a^2b}{b^2a}}=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b}=\dfrac{2\sqrt{ab}}{b}\left(B\right)\)
\(B=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
B=2/3A
=>3căn x/căn x+2=2/3*3=2
=>3căn x=2căn x+4
=>x=16
Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))
Bài 2:
Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :
\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.
Thay $x=1$ và $x=-1$ lần lượt ta có:
\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)
PP 2 xin đợi bạn khác giải quyết :)
Bài 3:
Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)
\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)
\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)
\(ab\cdot\sqrt{\dfrac{a}{3b}}-a^2\sqrt{\dfrac{3b}{a}}\)
\(=a\sqrt{ab}-a^2\cdot\dfrac{\sqrt{3b}}{\sqrt{a}}\)
\(=a\sqrt{ab}-a\sqrt{a}\cdot\sqrt{3b}\)
\(=a\sqrt{ab}\left(1-\sqrt{3}\right)\)
\(\Leftrightarrow m=\dfrac{a\sqrt{ab}\left(1-\sqrt{3}\right)}{\sqrt{3ab}}=\dfrac{a\left(\sqrt{3}-3\right)}{3}\)