Cho điểm I(x;y) trên mặt phẳng tọa độ và số thực R. Kiểm tra xem M(a;b) có nằm trên đường tròn tâm I bán kính R không? ( biểu diễn thuật toán bằng sơ đồ khối ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề, I không thể là trung điểm AC.
Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)
a,Trên tia Ox ta có OA=4cm,OB=6cm
Vì OA<OB(4cm<6cm)
suy ra Điểm A nằm giữa 2 điểm O và B
b, Vì điểm A nằm giữa 2 điểm O và B
suy ra OA+AB=OB
Thay OA=4cm,OB=6cm vào ta có
4+AB=6
AB=6-4
AB=2
Vậy AB=2cm
Ta có OA=4cm, AB=2cm suya OA>AB(4cm<2cm)
c,
Vì điểm I là trung điểm của đoạn thẳng OB
suy ra IO=IB=OB:2=6:2=3cm
Ta có IO=3cm,OC=3cm suy ra IO=OC=3cm (1)
Vì OC thuộc tia đối của tia Ox
suy ra 2 tia OC và Ox đối nhau
Mà điểm I thuộc tia Ox
suy ra 2 tia OI và OC đối nhau
suy ra điểm O nằm giữa 2 điểm C và I (2)
Từ (1) và (2) suy ra điểm O là trung điểm của đoạn IC
Nó giống câu a chỗ này, bạn tham khảo:
Câu hỏi của Nguyễn Ngô Minh Trí - Toán lớp 9 | Học trực tuyến
câu 1:
\(B=\dfrac{x-2}{y}-\dfrac{x}{x-2}+\dfrac{4}{x.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2.x}{y.\left(x-2\right).x}-\dfrac{x^2y}{y.\left(x-2\right).x}+\dfrac{4y}{y.\left(x-2\right).x}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-x^2y+4y}{x^2y-2xy}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x^2-4\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x-2\right).\left(x+2\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)\left[x-2-y.\left(x+2\right)\right]}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{x-2-xy+2}{xy}=\dfrac{x-xy}{xy}\)
\(\Leftrightarrow B=\dfrac{x}{xy}-\dfrac{xy}{xy}=\dfrac{1}{y}-1=\dfrac{1-y}{y}\)
Vậy \(B=\dfrac{1-y}{y}\)
a) Xét tứ giác AEFD có:
\(\widehat{EAD}=\widehat{ADF}=\widehat{EFD}\) (cùng bằng 90 độ)
=> AEFD là hình chữ nhật (do có 3 góc vuông)
Gọi I' là 1 điểm mà AC cắt EF
Xét tam giác CAD có:
I' nằm trên EF nêm I'F song song với AD (AEFD là hình chữ nhật) (1)
vì AEFD là hình chữ nhật nên AE=DF => DF = DC :2 <=> F là trung điểm của CD (2)
Từ (1) và (2) => I' là trung điểm của AC đồng thời ta được I'F = AD:2
mà AD = EF
=> I' là trung điểm của EF => I' trùng với I
=> I là trung điểm của AC
( do I' là trung điểm của AC và I' là giao điểm của AC và EF)
=> điều phải chứng minh
a.
Gọi M là trung điểm AB, dựng hình bình hành BCMN \(\Rightarrow\overrightarrow{NM}=\overrightarrow{BC}\)
\(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IB}+2\overrightarrow{CI}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{CB}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{IM}+2\overrightarrow{CB}=0\)
\(\Leftrightarrow\overrightarrow{IM}=\overrightarrow{BC}\Leftrightarrow I\) trùng N
b.
\(\overrightarrow{DB}+2\overrightarrow{DB}+2\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{DB}+2\overrightarrow{CB}=0\)
\(\Leftrightarrow\overrightarrow{DB}=2\overrightarrow{BC}\Rightarrow D\) là điểm nằm trên tia đối của tia BC sao cho \(BD=2BC\)
c.
\(\overrightarrow{AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}-2\overrightarrow{BC}=2\left(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\right)=2\overrightarrow{AI}\)
\(\Rightarrow A;I;D\) thẳng hàng
#include <bits/stdc++.h>
using namespace std;
double x,y,r,a,b;
int main()
{
cin>>x>>y>>r>>a>>b;
im=sqrt((x-a)*(x-a)+(y-b)*(y-b));
if (im==r) cout<<"Diem M nam tren duong tron";
else cout<<"Diem M khong nam tren duong tron";
return 0;
}
Biểu diễn bằng sơ đồ khối ?