rút gọn :
\(\left(cos0+1\right).tan0+cosh0+5!-119\)
! là giai thừa nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(4a^2cos^260^o+2ab.cos^2180^o+\dfrac{4}{3}cos^230^o\)
\(=4a^2.\left(\dfrac{1}{2}\right)^2+2ab.\left(-1\right)^2+\dfrac{4}{3}.\left(\dfrac{\sqrt{3}}{2}\right)^2\)
\(=4a^2.\dfrac{1}{4}+2ab+\dfrac{4}{3}.\dfrac{3}{4}\)
\(=a^2+2ab+1\).
b)
\(\left(asin90^o+btan45^o\right)\left(acos0^o+bcos180^o\right)\)
\(=\left(a+b\right)\left(a-b\right)=a^2-b^2\).
b) \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}\)
\(=\dfrac{2\left(3\cdot9-17\right)}{7\cdot\left(3\cdot9-17\right)}\)
\(=\dfrac{2}{7}\)
Ta có: \(\dfrac{3\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\left(\sqrt{5}-1\right)}{6+2\sqrt{5}}\)
\(=\dfrac{3\left(\sqrt{5}-1\right)\left(6-2\sqrt{5}\right)}{\left(6-2\sqrt{5}\right)\left(6+2\sqrt{5}\right)}\)
\(=\dfrac{3\left(6\sqrt{5}-10-6+2\sqrt{5}\right)}{16}\)
\(=\dfrac{3\left(8\sqrt{5}-16\right)}{16}\)
\(=\dfrac{3\cdot\left(\sqrt{5}-2\right)}{2}\)
\(\frac{2^{15}.5^8+2^{14}.5^9}{2^{16}.5^7+2^{16}.5^8}=\frac{2^{14}.5^8\left(2+5\right)}{2^{16}.5^7\left(1+5\right)}=\frac{2^{14}.5^8.7}{2^{16}.5^7.6}=\frac{5.7}{4.6}=\frac{35}{24}\)
\(\left(5-3x\right)\left(5+3x\right)-\left(x+1\right)^3\)
\(=25-9x^2-x^3-3x^2-3x-1\)
\(=-x^3-12x^2-3x+24\)
\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2=16\)
thôi không cần nữa các bạn ạ ! mình giải đc r đáp án là cosh(0) +1 nhé!