K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy S A B C   =   1 2 A B . A C   =   1 2 . 2 13   . 3 13 =   39 c m 2

Chọn đáp án A.

9 tháng 7 2018

Gọi D là giao điểm của AC và đường vuông góc với BC tại E.

Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)

Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = H C B C = 9 9 + 3 , 5 = 18 25 2

Từ (1) và (2) suy ra S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2 ( 3 )

Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên

S D E C : S A H C = ( E C H C ) 2 ( 4 )

Từ (3) và (4) suy ra E C H C = 5 6  tức là E C 9 = 5 6  => EC = 7,5cm.

Đáp án: D

30 tháng 10 2018

Gọi D là giao điểm của AC và đường vuông góc với BC tại E.

Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)

Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = 18 25 (2).

Từ (1) và (2) suy ra

S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2   3

Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên

S D E C : S A H C = ( E C H C ) 2 (4)

Từ (3) và (4) suy ra E C H C = 5 6  tức là E C 18 = 5 6 => EC = 15cm.

Đáp án: A

11 tháng 2 2018

Chọn A

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}AC\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=36+60=96(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)

\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)

\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)

\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên 

\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)

hay \(AH=\dfrac{15}{34}\left(cm\right)\)

7 tháng 7 2021

tại sao tam giác ABC vuông tại A có AH là đg cao ứng với cạnh huyền BC thì suy ra cái kia

giải thích đc không

17 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=1\cdot4=4\)

=>\(AH=\sqrt{4}=2\left(cm\right)\)

BC=BH+CH

=>BC=1+4=5(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

nên \(\widehat{C}\simeq27^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-27^0=63^0\)

b: AH=2cm

=>H thuộc (A;2cm)

Xét (A;2cm) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;2cm)

c: Sửa đề: BDEH

Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

=>HB=DE

Xét tứ giác BDEH có

BH//ED

BH=ED

Do đó: BDEH là hình bình hành

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)

25 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot6=24\)

=>\(AH=2\sqrt{6}\left(cm\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC^2=24+36=60\)

=>\(AC=2\sqrt{15}\left(cm\right)\)

ΔAHB vuông tại H

=>\(AB^2=AH^2+HB^2=16+24=40\)

=>\(AB=2\sqrt{10}\left(cm\right)\)

b: BC=BH+CH=10cm

c: ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BM\)