\(3\sqrt{3}\cdot\left(3+2\sqrt{6}-\sqrt{33}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(6-3\sqrt{3}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+1\right)\times3\left(2-\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(4-2\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)^2\)
\(=\dfrac{3\sqrt{6}}{2}\left(3-1\right)\left(\sqrt{3}-1\right)\)
\(=3\sqrt{6}\left(\sqrt{3}-1\right)\)
https://hoc24.vn/hoi-dap/question/405366.html
\(\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
= 5 - 3
= 2
a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+1\right)=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-\sqrt{2}\right)\)
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)
\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=2^2-\left(\sqrt{3}\right)^2\)
\(=4-3=1\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)\)
\(=\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2\)
\(=12-5=7\)
a) (2 - √3)(2 + √3)
= 2² - (√3)²
= 4 - 3
= 1
b) (2√3 - √5)(2√3 + √5)
= (2√3)² - (√5)²
= 12 - 5
= 7
Ta có : \(3\sqrt{3}\left(3+2\sqrt{6}-\sqrt{33}\right)\)
\(=9\sqrt{3}+6\sqrt{18}-3\sqrt{99}\)
\(=9\sqrt{3}+18\sqrt{2}-9\sqrt{11}\)
\(=9\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\)