Cho ΔABC vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a. Chứng minh ΔABC = ΔABD
b. Trên tia đối của tia AB, lấy điểm M. Chứng minh ΔMBD = ΔMBC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔMDC có
MA là đường cao
MA là đường trung tuyến
Do đó:ΔMDC cân tại M
Xét ΔMBD và ΔMBC có
MB chung
BD=BC
MD=MC
Do đó: ΔMBD=ΔMBC
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó: BCDE là hình bình hành
Suy ra: BC//DE
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a