cho tam giac ABC. Tren tia doi cua tia AB lay AE=AC,tren tia doi cua AC lay AF=AB. Noi A voi trung diem M cua BC va A voi trung diem N cua EF. Chung minh
a)tam giac ABC=tam giac AFE
b)tam giac ABM=tam giacAFN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
a) Chứng minh ΔABC=ΔAFE
Xét ΔABC và ΔAFE có
AB=AF(gt)
\(\widehat{BAC}=\widehat{FAE}\)(hai góc đối đỉnh)
AC=AE(gt)
Do đó: ΔABC=ΔAFE(c-g-c)
b) Chứng minh ΔABM=ΔAFN
Ta có: ΔABC=ΔAFE(cmt)
⇒\(\widehat{B}=\widehat{F}\)(hai góc tương ứng)
Ta có: ΔABC=ΔAFE(cmt)
⇒BC=FE(hai cạnh tương ứng)
mà \(BM=CM=\frac{BC}{2}\)(M là trung điểm của BC)
và \(FN=EN=\frac{FE}{2}\)(N là trung điểm của FE)
nên BM=CM=FN=EN
Xét ΔABM và ΔAFN có
BM=FN(cmt)
\(\widehat{B}=\widehat{F}\)(cmt)
AB=AF(gt)
Do đó: ΔABM=ΔAFN(c-g-c)