K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:

Tham khảo lời giải tại đây:

Câu hỏi của nguyen linh ngoc - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:
Violympic toán 8

Vì $AD\parallel BM$ nên :

$\widehat{B_1}=\widehat{A_1}$ (so le trong)

$\widehat{M_1}=\widehat{A_2}$ (đồng vị)

Mà $\widehat{A_1}=\widehat{A_2}$ nên $\widehat{B_1}=\widehat{M_1}$. Do đó tam giác $ABM$ cân tại $A$

$\Rightarrow AM=AB=2$

Áp dụng định lý Ta-let cho $AD\parallel BM$ ta có: $\frac{AD}{BM}=\frac{AC}{CM}=\frac{AC}{AC+AM}=\frac{3}{3+2}=\frac{3}{5}$

$\Rightarrow BM=\frac{5AD}{3}=\frac{5.1,2}{3}=2$ (cm)

$\Rightarrow MB=AB=AM=2$ nên tam giác $ABM$ là tam giác đều.

Do đó $\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{M_1}=60^0+60^0=120^0$

21 tháng 4 2022

giúp mik vs

 

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

23 tháng 1

phần c đâu ạ

 

a: Ta có:ΔABC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BAC}+50^0=90^0\)

=>\(\widehat{BAC}=40^0\)

b: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có

AB chung

\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)

Do đó: ΔFAB=ΔEBA

d: Sửa đề: I là trung điểm của BA

Xét tứ giác AFBE có

AF//BE

AE//BF

Do đó: AFBE là hình bình hành

=>AB cắt FE tại trung điểm của mỗi đường

mà I là trung điểm của AB

nên I là trung điểm của FE

=>F,I,E thẳng hàng

12 tháng 1

hình vẽ đâu bạn