Cho tam giác ABC có AB=AC.Gọi M là trung điểm của BC (MB=MC)
a)CM : Tam giác ABM= tam giác ACM
b)CM : AM là tia phân giác của BAC
c)Trên tia đối của tia MA lấy điểm D sao cho MD=MA.Chứng minh AB//CD
Vẽ hình giúp mk nha pls
Sắp nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác $AMB$ và $AMC$ có:
$AM$ là cạnh chung;
$AB = AC$ (gt);
$BM = MC$ ($M$ là trung điểm $BC$);
Suy ra $\Delta AMB=\Delta AMC$ (c.c.c)
b) $\Delta AMB=\Delta AMC$ suy ra
$\widehat{BAM} = \widehat{CAM}$ (hai góc tương ứng)
Suy ra $AM$ là tia phân giác của góc $BAC$.
c) Xét hai tam giác $AMD$ và $DMC$ có:
$AM = AD$ (gt);
$\widehat{AMB} = \widehat{CMD}$ (hai góc đối đỉnh);
$BM = MC$.
Nên $\Delta AMD=\Delta DMC$ (c.g.c)
Suy ra $\widehat{BAM} = \widehat{CDM}$ (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên $AB$ // $CD$.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
a: Sửa đề: ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
MB=MC
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
c: AB=AC
MB=MC
Do đó: AM là đường trung trực của BC
=>AM\(\perp\)BC
a: Xét ΔABM và ΔACM có
AM chung
AB=AC
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác ABDC có
M là trung điểm của BC
M la trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC
a) \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC=\sqrt{AC^2+AB^2}=\sqrt{15^2-8^2}=17\left(cm\right)\)
b) Xét \(\Delta ABM\) và \(\Delta DMC\) ta có:
\(MA=MD\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (hai góc đổi đỉnh)
\(BM=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta ABM=\Delta DMC\left(c-g-c\right)\)
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
AB = AC(gt)
AM chung
BM = CM(gt)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Ta có \(\Delta ABM=\Delta ACM\)(theo câu a)
=> \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
=> AM là tia phân giác của \(\widehat{BAC}\)
c) Xét \(\Delta ABM\)và \(\Delta CDM\)có :
AM = CM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
BM = DM(gt)
=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc so le trong)
=> AB //CD