.Tìm số nguyên tố abcd sao cho ab, ac là số nguyên tố và \(b^2\)=cd+b-c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link này nè bạn:
https://olm.vn/hoi dap/detail/54265377038.html
Chúc bạn học tốt
~_Forever_~
Để abcd nguyên tố \(\Leftrightarrow\)abcd lẻ \(\Leftrightarrow\)d lẻ
Mà ta lại có : b^2 =cd + b - c
b^2 = 9c+d+b
=> b(b-1) = 9c + d \(\le72\)
=> \(7\le c< 8\)=> c = 7 => d =9 => b = 9 => a = 1 hoặc 4
Vậy số cần tìm là : 1979 hoặc 4979
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Ta có: b2 =cd + b -c <=>b2 - b =10.c + d -c <=>b. ( b-1) = 9.c +d
Vì 9.c + d \(\ge\)10 => b.(b-1) \(\ge\)10 => b \(\ge\)4 mà \(\hept{\begin{cases}b\le9\\\overline{ab}\in N\end{cases}\Rightarrow\orbr{\begin{cases}b=7\\b=9\end{cases}}}\)
+, Nếu b =7 => 9.c+d =42 =>\(\hept{\begin{cases}d⋮3\\abcd\in P\end{cases}}\)=>\(\hept{\begin{cases}d=3\\d=9\end{cases}}\)
+,Với d = 3 => c= \(\frac{42-3}{9}=\frac{39}{9}\notinℕ\left(L\right)\)
+,Với d =9 => c = \(\frac{42-9}{9}=\frac{33}{9}\notinℕ\)
+,Nếu b = 9 => 9.c + d = 72
=> d\(⋮\)9 => d= 9
+, Với d = 9 => 9.c + 9 = 72 => 9.c = 63 => c = 7
\(^∗\))Với \(\hept{\begin{cases}b=9\\c=7\\d=9\end{cases}}\)=> a = 1
=> Ta có số 1979
Vậy số cần tìm có dạng abcd là 1979
mình yêu i-am- minh