tìm x: -2x - 11 chia hết cho 3x + 2 trả lời giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-2x - 11 = 3x +2
-2x -11 - 2 = 3x
-2x - 13 = 3x
2x + 13 = 3x
13 = x
a) 2(x-3)-3(x-5)=4(3-x)-18
2x-6-3x-15=12-4x-18
2x-3x+4x=12-18+6+15
3x=15
x=15:3
x=5
Vậy x=5
a, ( x+ 4 ) \(⋮\) ( x-1 )
Ta có : x+4 = x-1 + 5 mà ( x-1) \(⋮\) ( x-1 ) để ( x+ 4 ) \(⋮\) ( x-1 ) thì => 4 \(⋮\) ( x-1 )
hay x-1 thuộc Ư(4) = { 1;2;4}
ta có bảng sau
x-1 | 1 | 2 | 4 |
x | 2 | 3 | 5 |
Vậy x \(\in\) { 2;3;5 }
b, (3x+7 ) \(⋮\) ( x+1 )
Ta có : 3x+7 = 3(x+1) + 4 mà 3(x+1) \(⋮\) ( x+1) để (3x+7 ) \(⋮\) ( x+1 ) thì => 4 \(⋮\) ( x+1 )
hay x+1 thuộc Ư ( 4) = { 1;2;4}
Ta có bảng sau
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Vậy x \(\in\) {0;1;3} ( mik chỉ lm đến đây thôi , thông kảm )
Câu 1:
25 - 4.( -x - 1 ) + 3.(5x) = -x + 34
=> 25 + 4x + 4 + 15x = -x + 34
=> (25 + 4) + (4x + 15x) = -x + 34
=> 29 + 19x = -x + 34
=> 19x + x = 34 - 29
=> 20x = 5
=> x = \(\frac{1}{4}\)(T/m)
Vậy x =\(\frac{1}{4}\)
Câu 2:
Ta có: 11\(⋮\)2x - 1
=> 2x - 1 \(\in\)Ư(11) = \(\left\{\pm1;\pm11\right\}\)
=> 2x \(\in\){2; 0; 12; -10}
=> x \(\in\){1; 0; 6; -5} (T/m)
Vậy x \(\in\){1; 0; 6; -5}
Câu 3:
Ta có: x + 12 \(⋮\)x - 2
=> x - 2 + 14 \(⋮\) x - 2
Mà x - 2 \(⋮\) x - 2
=> 14 \(⋮\) x - 2
=> x - 2 \(\in\)Ư(14) = \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
=> x \(\in\){3; 1; 4; 0; 9; -5; 16; -12} (T/m)
Vậy x \(\in\){3; 1; 4; 0; 9; -5; 16; -12}
Câu 4:
Ta có: 3x + 17 \(⋮\)x + 3
=> 3x + 9 + 8 \(⋮\)x + 3
=> 3(x + 3) + 8 \(⋮\)x + 3
Mà 3(x + 3) \(⋮\)x + 3
=> 8 \(⋮\)x + 3
=> x + 3\(\in\)Ư(8) =\(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11} (T/m)
Vậy x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11}
C2:
11 chia hết cho 2x—1
==> 2x—1 € Ư(11)
==> 2x—1 € { 1;-1;11;-11}
Ta có:
TH1: 2x—1=1
2x=1+1
2x=2
x=2:2
x=1
TH2: 2x—1=—1
2x=-1+1
2x=0
x=0:2
x=0
TH3: 2x—1=11
2x=11+1
2x=12
x=12:2
x=6
TH4: 2x—1=-11
2x=-11+1
2x=—10
x=-10:2
x=—5
Vậy x€{1;0;6;—5}
C3: x+12 chia hết cho x—2
==> x—2+14 chia hết cho x—2
Vì x—2 chia hết cho x—2
Nên 14 chia hết cho x—2
==> x—2 € Ư(14)
==> x—2 €{ 1;-1;2;-2;7;-7;14;-14}
Ta có:
TH1: x—2=1
x=1+2
x=3
TH2: x—2=-1
x=-1+2
x=1
TH3: x—2=2
x=2+2’
x=4
TH4: x—2=—2
x=—2+2
x=0
TH5: x—2=7
x=7+ 2
x=9
TH6:x—2=—7
x=—7+ 2
x=—5
TH7: x—2=14
x=14+2
x=16
TH8: x—2=-14
x=-14+2
x=-12
Vậy x€{3;1;4;0;9;—5;16;-12}
Ta có :\(\hept{\begin{cases}-2x-11:3x+2\\3x+2:3x+2\end{cases}}\)\(\implies\)\(\hept{\begin{cases}3.\left(-2x-11\right):3x+2\\2\left(3x+2\right):3x+2\end{cases}}\) \(\implies\) \(\hept{\begin{cases}-6x-33:3x+2\\6x+4:3x+2\end{cases}}\)
\(\implies\) \(-6x-33+6x+4:3x+2\)
\(\implies\) \(-29:3x+2\)
\(\implies\) \(3x+2\) \(\in\) Ư(-29)=\(\{\)\(1;-1;29;-29\) \(\}\)
\(\implies\) \(x\) \(\in\) \(\{\) \(-1;9\)\(\}\)
a) Ta có: \(2x-2\)\(⋮\)\(x-2\)
\(\Leftrightarrow\)\(2\left(x-2\right)+2\)\(⋮\)\(x-2\)
Ta thấy \(2\left(x-2\right)\)\(⋮\)\(x-2\)
nên \(2\)\(⋮\)\(x-2\)
hay \(x-2\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\) \(1\) \(3\) \(4\)
Vậy \(x=\left\{0;1;3;4\right\}\)
\(\Rightarrow\left[3\left(x+1\right)+8\right]⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Rightarrow x\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)