Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN lần lượt là phân giác của góc AIC và AIB. Chứng minh rằng: AN.BI.CM=BN.IC.AM
c) Chứng minh rằng \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)