giải pt sau 3x(x+5)-(x+2)^2=2x^2+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)
Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
a: \(\dfrac{3x-7}{2}+\dfrac{x-1}{3}=-16\)
\(\Leftrightarrow3\left(3x-7\right)+2\left(x-1\right)=-96\)
\(\Leftrightarrow9x-21+2x-2=-96\)
=>11x=-73
hay x=-73/11
b: \(x-\dfrac{x-1}{3}=\dfrac{2x+1}{5}\)
=>15x-5(x-1)=3(2x+1)
=>15x-5x+5=6x+3
=>10x+5=6x+3
=>4x=-2
hay x=-1/2
c: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
=>14x-7-15x-6=21(x+13)
=>21x+273=-x-13
=>22x=-286
hay x=13
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x^2+2x\\x^2-x-2=-x^2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-2=0\\2x^2+x-2=0\end{matrix}\right.\)
hay \(x\in\left\{-\dfrac{2}{3};\dfrac{-1+\sqrt{17}}{4};\dfrac{-1-\sqrt{17}}{4}\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x^2+10x+21=x^2-20x-9\\3x^2+10x+21=-x^2+20x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+30x+30=0\\4x^2-10x+12=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{-15+\sqrt{165}}{2};\dfrac{-15-\sqrt{165}}{2}\right\}\)
\(3x\left(x+5\right)-\left(x+2\right)^2=2x^2+7\)
\(\Leftrightarrow3x^2+15x-x^2-4x-4=2x^2+7\)
\(\Leftrightarrow3x^2-2x^2-x^2+15x-4x=7+4\)
\(\Leftrightarrow11x=11\)
\(\Leftrightarrow x=1\)
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
đăng kí hộ