cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a, chứng minh rằng tam giác AMB= tam giác AMC
b, chứng minh rằng AM là tia phân giác của góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK
a: Xét ΔAMB và ΔAMC có
AB=AC
BM=CM
AM chung
=>ΔAMB=ΔAMC
b: Xét ΔMAB vuông tại M va ΔMDC vuông tại M có
MB=MC
góc MBA=góc MCD
=>ΔMAB=ΔMDC
=>MA=MD
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
a) Xét ΔAMB và ΔAMC , có :
AM là cạnh chung
AC = AB ( gt )
BM = MC (
Sorry , mk bấm nhầm :
a) Xét ΔAMB và ΔAMC , có:
AM là cạnh chung
AB = AC ( gt )
MB = MC ( M là trung điểm của BC )
=> ΔAMB = ΔAMC ( ccc )
b) Ta có : Góc BAM = góc MAC ( ΔAMB = ΔAMC )
=> AM là tia phân giác của góc BAC
a, vì ab =ac (gt)
=> abc là tam giác cân tại a
vì tam giác abc cân tại a
=> góc b = góc c
vì m là trung điểm bc
=> bm = mc
xét tam giác amb và tam giác amc có
bm =mc
góc b = góc c
ab = ac
=> tam giác amb = tam giác amc (cgc)
b, vì 2 tam giác chứng minh ở câu a bằng sau
=> bam = cam( cặp góc tương ứng)
=> am là tia p/g của bac
a) Xét ΔAMB và ΔAMC , có:
\(\hept{\begin{cases}AM-chung\\AB=AC\left(gt\right)\\MB=MC\left(TĐBC\right)\end{cases}}\)( TĐBC : trung điểm BC nha )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) Ta có :^BAM = ^MAC ( \(\Delta\)AMB = \(\Delta\)AMC )
=> AM là tia phân giác của ^BAC