K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

Gọi D,F lần lượt là trung điểm của AB,AC chứng minh tam giác DFH cân

 

18 tháng 9 2023

Xét \(\Delta CMB\) và \(\Delta CMA\) có:

MC chung

\(\widehat{BMC}=\widehat{AMC}(=90^0)\)

MB=MA (gt)

=> \(\Delta CMB = \Delta CMA\)(c.g.c)

=> CA = CB (2 cạnh tương ứng).

=> Tam giác ABC cân tại C.

 Mà \(\widehat B=\) 60o

=> Tam giác ABC đều.

Xét ΔCMB vuông tại M và ΔCMA vuông tại M có

CB=CA
CM chung

=>ΔCMB=ΔCMA

=>CB=CA

Xét ΔCBA có

CB=CA

góc B=60 độ

=>ΔCBA đều

22 tháng 8 2019

Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!

C/m:

Từ giả thiết ta có:

\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\)                 \(\left(.\right)\)

\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)

\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)

Giả sử \(MA\ne MB\)ta xét 2 trường hợp:

T/ hợp 1\(MA< MB\)

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)

22 tháng 8 2019

Nối MA.

Để chứng minh MA =MB. Ta dùng phản chứng.

G/s: \(MA\ne MB\)

Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)

Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)

Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)

+) TH1: MA> MB=MC

Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)

Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)

+) TH1: MA< MB=MC

Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)

Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)

=> Điều giả sử là sai

=> MA=MB

a: Xét (O) có 

ΔMBC nội tiếp

BC là đường kính

Do đó: ΔMBC vuông tại M

b: MB⊥MC

OD⊥MC

Do đó: MB//OD

7 tháng 5 2016

Đè của bạn vô lý

6 tháng 7 2019

A B C E M

Cm: a) Xét t/giác AMB và t/giác CME

có: AM = MC (gt)

  BM = ME (gt)

  \(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)

=> t/giác AMB = t/giác CME (c.g.c)

b) Ta có: AB < BC (cgv < ch)

Mà AB = CE (vì t/giác AMB = t/giác CME)

=> CE < BC

c) Ta có: CE < BC (cmt)

=> \(\widehat{MBC}< \widehat{MEC}\) (quan hệ giữa góc và cạnh đối diện)

Mà \(\widehat{MEC}=\widehat{ABM}\) (vì t/giác AMB = t/giác CME)

=> \(\widehat{ABM}>\widehat{MBC}\)

d) Xét t/giác AME và t/giác CMB

có: AM = MC (gt)

  ME = MB (gt)

  \(\widehat{AME}=\widehat{CMB}\)(đối đỉnh)

=> t/giác AME = t/giác CMB (c.g.c)

=> \(\widehat{CBM}=\widehat{MEA}\) (2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AE // BC (Đpcm)

A B C M E  

Con chỉ vẽ minh họa đc thôi, bác vẽ ^A vuông hộ con.

a, Xét \(\Delta\)ABM và \(\Delta\)CEM ta có 

^M _ chung 

BM = ME (gt)

^B = ^E (sole trog) 

=> \(\Delta\)ABM = \(\Delta\)CEM (c.g.c) 

a: Xét ΔABC có góc B<góc C

nên AB>AC

Xét ΔABC có

AB>AC

HB,HC lần lượt là hình chiếu của AB,AC trên BC

=>HB>HC

b: Xét ΔMBC có

HB,HC lần lượt là hình chiếu của MB,MC trên BC

HB>HC

=>MB>MC

c: MB>MC

=>góc MCB>góc MBC