Chứng minh rằng A= \(2007^{2006}+2008^{2009}+2019^{2020}\) không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: A = 2008 + 2007.2008 và B = 2006.2007.2008
Xét A = 2008 + 2007.2008:
=> A = 2008.1 + 2007.2008
=> A = 2008.(1 + 2007)
=> A = 2008.2008
=> A = 20082
=> A là số chính phương
=> ĐPCM (Điều phải chứng minh)
Xét B = 2006.2007.2008:
=> B = 2.17.59.32.223.23.251 (phân tích thừa số nguyên tố)
=> B \(⋮\)17
Mà B không chia hết cho 172 (vì trong biểu thức của B chỉ có một số là 17, các số còn lại đều không chia hết cho 17)
=> B không phải là số chính phương
=> ĐPCM
a. kết quả = 401/402
b. Ta có: 1-2004/2009=5/2009 , 1--2005/2010=5/2010 . Vì 5/2009 > 5/2010 nên 2004/2009 < 2005/2010.
Đấy phần b. mk ko quy đồng nha!
Nhớ Tích cho mk đấy
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
Ta có 1 số chính phương chia 4 dư 0 hoặc 1 (1)
Lại có: \(2007\equiv3\equiv-1\left(mod4\right);2008\equiv0\left(mod4\right);2019\equiv3\equiv-1\left(mod4\right)\)
=> \(A=2007^{2006}+2008^{2009}+2019^{2020}\equiv\left(-1\right)^{2006}+0^{2009}+\left(-1\right)^{2020}\equiv2\left(mod4\right)\)
=> A chia 4 dư 2 (2)
Từ (1) ; (2) => A không là số chính phương.