Cho tam giác ABC nhọn ( AB<AC ) có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: tam giác ABD đồng dạng tam giác ACE
b) Chứng minh: HD.HB=HE.HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Chứng minh: \(\frac{\text{IF}}{IC}=\frac{FA}{CF}\)
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm cạnh IC. Chứng minh: NI vuông góc FM.