Cho ba đường thẳng y = 2x (d1) ; y = x + 1 (d2) ; y = (k - 2)x + 2k + 1 (d3)
Tìm k để ba đường thẳng trên đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm A(x; y) của hai đường thẳng d 2 và d 3 là nghiệm hệ phương trình: y = - x + 3 y = - 2 x + 1 ⇔ x = - 2 y = 5 ⇒ A ( - 2 ; 5 )
Do đường thẳng d 4 // d 1 nên d 4 có dạng: y = 2x + b
Ba đường thẳng d 2 ; d 3 ; d 4 đồng quy nên điểm A(-2; 5) thuộc đường thẳng d 4 .
Suy ra: 5 = 2.(-2) + b ⇔ b = 9
Vậy phương trình đường thẳng ( d 4 ) là y = 2x + 9.
a) Phương trình hoành độ giao điểm của d₁ và d₂
x + 2 = 5 - 2x
⇔ x + 2x = 5 - 2
⇔ 3x = 3
⇔ x = 1
Thay x = 1 vào d₁ ta có:
y = 1 + 2 = 3
⇒ Giao điểm của d₁ và d₂ là A(1; 3)
Thay tọa độ điểm A vào d₃ ta có:
VT = 3
VP = 3.1 = 3
⇒ VT = VP
Hay A ∈ d₃
Vậy d₁, d₂ và d₃ đồng quy
b) Thay tọa độ điểm A(1; 3) vào d₄ ta có:
m.1 + m - 5 = 3
⇔ 2m - 5 = 3
⇔ 2m = 3 + 5
⇔ 2m = 8
⇔ m = 8 : 2
⇔ m = 4
Vậy m = 4 thì d₁, d₂ và d₄ đồng quy
Đáp án C
Hoành độ giao điểm của d 1 và d 2 là nghiệm phương trình:
2x + 1 = x -1 nên x = -2
Với x = -2 thì y = 2. (-2) + 1 = -3
Vậy 2 đường thẳng d 1 và d2 cắt nhau tại A(-2; -3).
Để ba đường thẳng đã cho đồng quy thì điểm A(-2; -3) thuộc đồ thị hàm số y = (m + 1)x – 2
Suy ra: -3 = (m + 1).(-2) - 2
có y=ax+b(d)
thì d sẽ cắt oy tại b
d1,d2,d3 đều cắt oy tại tung độ 2
mình làm ngắn gọn tạo hướng lm còn bạn bổ sung lời giải nha
Ba đường thẳng đã cho đồng quy khi hệ 2 x + 3 y = 1 x - y = 2 m x + ( 2 m + 1 ) y = 2 có nghiệm duy nhất.
Xét hệ gồm hai phương trình (1) và (2) :
2 x + 3 y = 1 ( 1 ) x - y = 2 ( 2 ) ⇔ 2 x + 3 y = 1 2 x - 2 y = 4 ⇔ 2 x + 3 y = 1 5 y = - 3 ⇔ x = 7 5 y = - 3 5
Hệ này có nghiệm duy nhất là 7 5 ; - 3 5 .
Để ba đường thẳng đã cho đồng quy thì 7 5 ; - 3 5 cũng là nghiệm của phương trình (3), tức là
m . 7 5 + 2 m + 1 . - 3 5 = 2 ⇔ 7 m - 3 2 m + 1 = 10 ⇔ 7 m - 6 m - 3 = 10 ⇔ m = 13 .
1: Để hai đường song song thì m+3=2
hay m=-1
3: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}y_B=0\\-x+4=0\end{matrix}\right.\Leftrightarrow B\left(4;0\right)\)
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+1=x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-x=2-1\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Để (d1),(d2),(d3) đồng quy thì (d3) đi qua A(1;3)
Thay x=1 và y=3 vào (d3), ta được:
\(m^2+1+m=3\)
=>\(m^2+m-2=0\)
=>\(m^2+2m-m-2=0\)
=>\(\left(m+2\right)\left(m-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=1\end{matrix}\right.\)