K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

a) 7n + 13 và 2n + 4

ƯC (7n + 13 ; 2n + 4) = d

\(\Rightarrow\left[{}\begin{matrix}\text{ 7n + 13 ⋮ d}\\\text{2n + 4 ⋮ d}\end{matrix}\right.\)

⇒ 7(2n + 4) - 2(7n + 13) ⋮ d

⇒ 2 ⋮ d

d = 1; 2

Xét thấy 7n + 13 không chia hết cho 2 ⇒ d = 1

Để 7n + 13 và 2n + 4 là hai số sau nguyên tố cùng nhau

Thì 7n + 13 là lẻ ⇒ 7n chẵn ⇒ n chẵn

➤ Vậy n chẵn thì hai số đó là hai số nguyên tố cùng nhau

b) 9n + 24 và 3n + 4

\(\Rightarrow\left[{}\begin{matrix}\text{9n + 24 ⋮ d }\\\text{3n + 4 ⋮ d }\end{matrix}\right.\)

⇒ 9n + 24 - 3(3n + 4) ⋮ d

⇒ 12 ⋮ d

d = 1; 2; 3; 4; 6; 12

3n + 4 không chia hết cho 3; 4; 6; 12 ⇒ d = 1; 2

Để 9n + 24 và 3n + 4 là hai số sau nguyên tố cùng nhau

Thì 9n + 24 là lẻ ⇒ 9n lẻ ⇒ lẻ

➤ Vậy n lẻ thì hai số đó là hai số nguyên tố cùng nhau

c) 18n + 3 và 21n + 7

\(\Rightarrow\left[{}\begin{matrix}\text{18n + 3 ⋮ d}\\\text{21n + 7 ⋮ d }\end{matrix}\right.\)

⇒ 6(21 + 7) - 7(18 + 3) ⋮ d

⇒ 21 ⋮ d

d = 3; 7

18n + 3 không chia hết cho 3 ⇒ d = 7

Để 18n + 3 và 21n + 7 là hai số sau nguyên tố cùng nhau

Thì n = 7k - 1 (k ∈ N)

➤ Vậy n = 7k - 1 (k ∈ N) thì hai số đó là hai số nguyên tố cùng nhau

10 tháng 11 2016

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
9 tháng 3 2017

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1

10 tháng 11 2016

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2017

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

10 tháng 11 2016

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

11 tháng 1 2017

gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d 

ta có 2n + 3 chia hết cho d 

=> 2( 2n + 3) chia hết cho d 

=> 4n + 6 chia hết cho d 

=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d 

=> 4n + 6 - 4n - 3 chia hết cho d 

=> 3 chia hết cho d 

=> d = { 1,3}

để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3 

=> n = 1,... t=B tự tìm nhé

24 tháng 7 2016

Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau

Toán lớp 6 Ước chung

23 tháng 11 2016

Gọi d e ƯC ( 2n+3;4n+1)

suy ra:

(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d

                                  suy ra 8n+3 chia hết cho d

suy ra

(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d

                                  suy ra: 8n+1 chia hết cho d

suy ra : (8n+3)-(8n+1) chia hết cho d

suy ra: 2 chia hết cho d

suy ra : d thuộc Ư(2)

suy ra : d thuộc {1,2}

vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ

suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1

vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau

25 tháng 10 2020

a) Đề:..........

Gọi d là ƯC của 7n + 10; 5n + 7

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(7n+10\right)⋮d\\7.\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> (35n + 50) - (35n + 49) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau

b) Đề:............

Gọi d là ƯC của 2n + 3; 4n + 8

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d

=> d thuộc Ư(2)

=> d = {1; 2}

Mà 2n + 3 là số lẻ (không thỏa mãn)

=> 1 chia hết cho d

Vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.