K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADF và ΔADC có

AD chung

\(\widehat{FAD}=\widehat{CAD}\)

AF=AC

Do đó: ΔADF=ΔADC

b: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{BDE}=180^0\)(hai góc kề bù)

nên \(\widehat{BDE}+\widehat{BDF}=180^0\)

=>E,D,F thẳng hàng

c: Ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

19 tháng 11 2023

a:

AB+BF=AF

AE+EC=AC

mà AB=AE và AC=AF

nên BF=EC

Xét ΔAEF và ΔABC có

AE=AB

\(\widehat{EAF}\) chung

AF=AC

Do đó: ΔAEF=ΔABC

=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

\(\widehat{DFB}=\widehat{DCE}\)

Do đó: ΔDBF=ΔDEC

=>DB=DE

Xét ΔABD và ΔAED có

AB=AE

BD=ED

AD chung

Do đó: ΔABD=ΔAED

=>\(\widehat{BAD}=\widehat{EAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔAEM có

AB=AE

\(\widehat{BAM}=\widehat{EAM}\)

AM chung

Do đó: ΔABM=ΔAEM

=>MB=ME

AC-AB=EC

mà EC>MC-ME

và MC=MF

nên AC-AB>MC-ME=MC-MB(ĐPCM)

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

24 tháng 10 2021

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBF}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có 

\(\widehat{DBF}=\widehat{DEC}\)

DB=DE

\(\widehat{BDF}=\widehat{EDC}\)

Do đó: ΔDBF=ΔDEC

a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

     AB = AC (gt)

     \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))

      AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!

Xét \(\Delta AEF\)và \(\Delta ADB\)có:

      AE = AD (gt)

      \(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)

       AF = AB (gt)

\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)

=> EF = DB (2 cạnh tương ứng)

c) Ta có: AF = AB, mà AC = AB

=> AF = AC

Xét \(\Delta AHF\)và \(\Delta AHC\)có:

       AF = AC (cmt)

       AH là cạnh chung

       HF = HC (H là trung điểm của FC)

\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)

=> AH là tia phân giác của \(\widehat{CAF}\)

d)