Chứng minh rằng 51 không thể là tổng của 2 số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thấy rằng 51 không thể là tổng của 2 số chẵn hoặc 2 số lẻ được
=>51 chỉ có thể là tổng của 1 số chẵn và 1 số lẻ
Số chẵn mà là số nguyên tố thì chỉ có số 2
\(51=2+49\)
49 chia hết cho 7 nên 49 không là số nguyên tố
=>51 không thể là tổng của hai số nguyên tố được
bài 3 : ko vì tổng của hai số nguyên tố là 2003 nên
Trong đó phải có 1 số chẵn và một số lẻ
Mà số nguyên tố duy nhất chẵn là số 2
=> Số còn lại bằng 2001 mà 2001 chia hết cho 3 nên nó là hợp số
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Nếu p=3k+1
=>p+4=3k+1+4=3k+5
=>p+2=3k+1+2=3k+3 chia hết cho 3=>không thể đồng thời là số nguyên tố.
Nếu p=3k+2
=>p+2=3k+2+2=3k+4
=>p+4=3k+2+4=3k+6 chia hết cho 3 => không thể đồng thời là số nguyên tố
51=2+49(loại vì 49 là số nguyên tố)
51=2a+1+2k+1=2(a+k)+2(vô lý vì 51 là số lẻ)
Do đó: 51 không thể là tổng của hai số nguyên tố