Cho tam giác ABC nhọn. CMR: sin2A+sin2B+sin2C≥ 9/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A, B, C là ba góc của tam giác nên ta có : A + B + C = π.
⇒ C = π - (A + B); A + B = π - C
a) Ta có: tan A + tan B + tan C = (tan A + tan B) + tan C
= tan (A + B). (1 – tan A.tan B) + tan C
= tan (π – C).(1 – tan A. tan B) + tan C
= -tan C.(1 – tan A. tan B) + tan C
= -tan C + tan A. tan B. tan C + tan C
= tan A. tan B. tan C
b) sin 2A + sin 2B + sin 2C
= 2. sin (A + B). cos (A – B) + 2.sin C. cos C
= 2. sin (π – C). cos (A – B) + 2.sin C. cos (π – (A + B))
= 2.sin C. cos (A – B) - 2.sin C. cos (A + B)
= 2.sin C.[cos (A – B) - cos (A + B)]
= 2.sin C.[-2sinA. sin(- B)]
= 2.sin C. 2.sin A. sin B ( vì sin(- B)= - sinB )
= 4. sin A. sin B. sin C
Tại sao câu b) cái phần sin2A + sin2B lại bằng 2sin(A+B).cos(A-B) vậy ạ
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC=2sinC\left[cos\left(A-B\right)+cosC\right]\)
\(=4sinC.cos\left(\frac{A+C-B}{2}\right).cos\left(\frac{A-B-C}{2}\right)\)
\(=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{2A-\pi}{2}\right)=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{\pi-2A}{2}\right)\)
\(=4sinC.cos\left(\frac{\pi}{2}-B\right).cos\left(\frac{\pi}{2}-A\right)\)
\(=4sinA.sinB.sinC\)
Lời giải:
Ta có:
$\sin 2A+\sin 2B=2\sin \frac{2A+2B}{2}\cos \frac{2A-2B}{2}=2\sin (A+B)\cos (A-B)$
$=2\sin (\pi -C)\cos (A-B)=2\sin C\cos (A-B) $
Do đó:
$\sin 2A+\sin 2B+\sin 2C=\sin 2C+2\sin C\cos (A-B)=2\sin C\cos C+2\sin C\cos (A-B)$
$=2\sin C[\cos C+\cos (A-B)]=2\sin C[\cos (\pi -A-B)+\cos (A-B)]$
$=2\sin C[\cos (A-B)-\cos (A+B)]=-2.\sin C[\cos (A+B)-\cos (A-B)]$
$=-2\sin C. (-2).\sin \frac{(A+B)+(A-B)}{2}.\sin \frac{(A+B)-(A-B)}{2}=4\sin C.\sin A.\sin B$
Ta có đpcm.
\(VT=sin^2A+sin^2B+sin^2C=\frac{1-cos2A}{2}+\frac{1-cos2B}{2}+1-cos^2C\)
\(=2-\left(cos2A+cos2B\right)-cos^2C=2-cos\left(A+B\right)cos\left(A-B\right)-cos^2C\)
\(=2+cosC.cos\left(A-B\right)-cos^2C\)
Mà ABC là tam giác nhọn \(\Rightarrow\left\{{}\begin{matrix}cosC>0\\0< cos\left(A-B\right)\le1\end{matrix}\right.\)
\(\Rightarrow cosC.cos\left(A-B\right)\le cosC\)
\(\Rightarrow VT\le2+cosC-cos^2C=\frac{9}{4}-\left(cosC-\frac{1}{2}\right)^2\le\frac{9}{4}\)
Dấu "=" xảy ra khi ABC là tam giác đều
P/s: BĐT của bạn bị ngược chiều