Gọi phân giác trong BN và CK của tam giác ABC cắt nhau tại G.
Chứng minh: Nếu GN=GK thì hoặc tam giác ABC cân tại A hoặc góc BAC = 60độ
Helps me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet 2 tgAEI va tgADI co AI=AI;EI=DI;gEAI=gDAI=gBAC/2
tuc la truong hop c.c.g
xet 2 truong hop
1)AD=AE=>tgAIE=tgAID=>gAEC=gADB
=>gB/2+gC=gB+gC/2
=>2B+C=2C+B=>180-A+B=180-A+C=>B=C dpcm
2)AD>AE tren AD lay P sao cho AP=AE=> tgAEI=tgAPI
=>gAEI=gAPI =gB+gC/2 va IP=ID(=EI)
=>gIPD=gIDP=gB/2+gC
Mat khac gAPI+gIPD=180
=> gB/2+gC+gC/2+gB=180
=> gB+gC=120 =>gA=60
(neu AD<AE xet tuong tu)
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Bạn tự vẽ hình nha!
a.
AB = AC (tam giác ABC cân tại A)
mà AB = 15 nên AC = 15
Tam giác ABC có:
AC < BC (15 < 18)
=> B < A (quan hệ giữa góc và cạnh đối diện)
b.
Xét tam giác ABH và tam giác ACH có:
A1 = A2 (AH là tia phân giác của BAC)
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
=> Tam giác ABH = Tam giác ACH (g.c.g)
c.
AH là tia phân giác của tam giác ABC cân tại A
=> AH là trung tuyến của tam giác ABC
mà BD là trung tuyến của tam giác ABC
=> G là trọng tâm của tam giác ABC.
d.
AH là tia phân giác của tam giác ABC cân tại A
=> AH là trung trực của tam giác ABC
=> H là trung điểm của BC
=> BH = CH = BC/2 = 18/2 = 9
Áp dụng định lí Pytago vào tam giác ABH vuông tại H có:
AB^2 = AH^2 + BH^2
15^2 = AH^2 + 9^2
AH = 12
Ta có:
AG = 2/3 AH (tính chất trọng tâm)
=> AG = 2/3 . 12 = 8
d.
G là trọng tâm của tam giác ABC
=> CE là trung tuyến của tam giác ABC
=> E là trung điểm của AB
=> AE = BE = AB/2
Ta có: AD = CD = AC/2 (BD là trung tuyến của tam giác ABC)
mà AB = AC (tam giác ABC cân tại A)
=> AE = AD
Xét tam giác AEG và tam giác ADG có:
AE = AD (chứng minh trên)
A1 = A2 (AH là tia phân giác của tam giác ABC)
AG là cạnh chung
=> Tam giác AEG = Tam giác ADG
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA
a: Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyên của ΔABC
mà ΔABC cân tại A
nên AG là phân giác của góc BAC
b ΔACB cân tại A
mà AG là trung tuyến
nên AG là trung trực của BC
=>GB=GC
c: Xét ΔGAC có
CK,AI,GD là trung tuyến
=>CK,AI,GD đồng quy
=>CD,AI,BD đồng quy
em học cạnh và góc đối diện chưa ??
E học rồi