Cho tam giác ABC. Trên nửa mặt phẳng AB không chứa C, vẽ tia AM sao cho góc MAB= góc ABC.Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia AN sao cho NAC=ACB. Chứng minh AN và AM là hai tia đối nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
góc mAB = góc ABC (gt)
Mà 2 góc này nằm ở vị trí so le trong
Nên Am // BC (1)
Chứng minh tương tự ta có:
An // BC (2)
Từ (1) và (2) suy ra Am trùng với An
=> An và Am trùng nhau (đpcm)
Mik vẽ hình thấy sai thì phải. Góc ACB , không phải góc ABC
a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE
Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :
AB = AD gt
BK = AE cùng bằng AC
\(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC
Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)
\(\Rightarrow AK=DE\)hai cạnh tương ứng
Vậy AM = DE/2
b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900
Ta có:
góc mAB = góc ABC (gt)
Mà 2 góc này nằm ở vị trí so le trong
Nên Am // BC (1)
Chứng minh tương tự ta có:
An // BC (2)
Từ (1) và (2) suy ra Am trùng với An
=> An và Am trùng nhau (đpcm)