K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

\(d\cap\Delta\Leftrightarrow\frac{A_1}{A_2}\ne\frac{B_1}{B_2}\Leftrightarrow\frac{m+3}{m}\ne2\) \(\Leftrightarrow m+3\ne2m\Leftrightarrow m\ne3\)

\(d//\Delta\Leftrightarrow\frac{A_2}{A_2}=\frac{B_1}{B_2}\ne\frac{C_1}{C_2}\Leftrightarrow\frac{m+3}{m}=2\ne\frac{6}{2-m}\Leftrightarrow m=3\)

\(d\equiv\Delta\Leftrightarrow\frac{m+3}{m}=2=\frac{6}{2-m}\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=3\end{matrix}\right.\)

19 tháng 4 2017

Chọn C.

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

17 tháng 2 2017

Đáp án: A

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Ta có:

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

25 tháng 7 2021

\(\Delta\) đi qua M(1,-1) có hệ số góc k

=> \(\Delta:y=k\left(x-1\right)-1=kx-k-1\)

\(\Delta\) song song d: \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) \(=>k=\dfrac{1}{2}\)

\(\Delta:y=\dfrac{1}{2}x-\dfrac{3}{2}\)

NV
22 tháng 4 2021

a.

Hai đường thẳng song song khi:

\(\dfrac{m+3}{2}=\dfrac{3}{2}\ne\dfrac{-2m+3}{2-3m}\)

\(\Leftrightarrow m=0\)

b.

Hai đường thẳng trùng nhau khi: \(\dfrac{m+3}{2}=\dfrac{3}{2}=\dfrac{-2m+3}{2-3m}\Rightarrow\) ko tồn tại m thỏa mãn

Vậy 2 đường thẳng cắt nhau khi \(m\ne0\)

15 tháng 1 2017

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

Vì (Δ) // (d) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n\ne5\end{matrix}\right.\) \(\Rightarrow\left(\Delta\right):y=-2x+n\)

Phương trình hoành độ giao điểm của (Δ) và (P)

  \(-2x+n=-\dfrac{1}{2}x^2\) \(\Leftrightarrow\dfrac{1}{2}x^2-2x+n=0\) (*)

Ta có: \(\Delta'=1-\dfrac{1}{2}n\)

Để (Δ) và (P) có 1 điểm chung duy nhất 

\(\Leftrightarrow\) Phương trình (*) có nghiệm kép \(\Leftrightarrow1-\dfrac{1}{2}n=0\) \(\Leftrightarrow n=2\)  (Thỏa mãn)

  Vậy \(m=-2\) và \(n=2\)