Cho x,y thuộc Z và (x-y) chia hết cho 7. Chứng tỏ 2x + 20y chia hết cho 7?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x - y chia hết cho 7 nên tích trên chia hết cho 7.
b) x - y chia hết cho 7 => x và y chia hết cho 7
=> Tổng đó chia hết cho 7
8,
A Có : 24a+15b = 3.(8a+5b) chia hết cho 3
B
Vì 24a+15b chia hết cho 3 mà -2014 ko chia hết cho 3 nên ko tìm được 2 số a,b sao cho 24a+15b=-2014
Tk mk nha
8,a, Ta có: 24a + 15b = 3( 8a + 5b ) chia hết cho 3
b, Theo câu a ta có 24a + 15b chia hết cho 3 nhưng -2014 không chia hết cho 3 ( vì tổng các chữ số của nó không chia hết cho 3 ) nên không tìm được 2 số x, y để thõa mãn đẳng thức trên
9, a, 22x - y = 21x +x - y
Ta có x - y chia hết cho 7 và 21x cũng chia hết cho 7 nên 21x + x - y chia hết cho 7 hay 22x - y chia hết cho 7
b, 8x + 20y = 7x + 21y + x - y
Ta có: x - y , 7x , 21y chia hết cho 7 nên 7x + 21y + x - y chia hết cho 7 hay 8x + 20y chia hết cho 7
Câu c bí rồi bạn ơi
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
Ta có: x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+49x+5y chia hết cho 7
=>50x+5y chia hết cho 7
=>5.(10x+y) chia hết cho 7
Mà (5,7)=1
=>10x+y chia hết cho 7
=>ĐPCM
Ngược lại: 10x+y chia hết cho 7
=>5.(10x+y) chia hết cho 7
=>50x+5y chia hết cho 7
=>x+49x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+5y chia hết cho 7
=>ĐPCM
Ta có :
\(A+B=2x^2yz+xy^2z\)
\(=xyz\left(2x+y\right)\)
Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)
Do đó : \(A+B⋮m\) (đpcm)