: Cho tam giác ABC, gọi I, K lần lượt là trung điểm của AB, AC. Trên tia đối của tia IC lấy điểm M sao cho IC = IM, trên tia đối của tia KB lấy điểm N sao cho KB = KN.
a) Chứng minh rằng: AB // NC.
b) Kẻ đường cao AH, chứng minh rằng : HM = HN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIM và ΔBIC có
IA=IB
\(\widehat{AIM}=\widehat{BIC}\)
IM=IC
Do đó: ΔAIM=ΔBIC
=>\(\widehat{IAM}=\widehat{IBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AM//BC
ΔIAM=ΔIBC
=>AM=BC
b: Xét ΔEAN và ΔECB có
EA=EC
\(\widehat{AEN}=\widehat{CEB}\)
EN=EB
Do đó: ΔEAN=ΔECB
=>\(\widehat{EAN}=\widehat{ECB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//CB
c: ΔEAN=ΔECB
=>AN=CB
AN//CB
AM//CB
AN,AM có điểm chung là A
Do đó: M,A,N thẳng hàng
mà MA=NA
nên A là trung điểm của MN
Xét tứ giác ABCN có
E là trung điểm chung của AC và BN
nên ABCN là hình bình hành
=>AN//BC
a) Dễ chứng minh \(\Delta\)AKN = \(\Delta\)CKB (c.g.c)
=> ^KNA = ^KBC (hai góc tương ứng)
Mà hai góc này ở vị trí slt nên AB //NC(đpcm)
b) Từ câu a cũng suy ra AN // BC
Chứng minh tương tự ta có: AM // BC
=> AM \(\equiv\)AN (theo tiên đề Ơ - cơ - lít)
nên A,M,N thẳng hàng mà AH vuông góc BC nên AH vuông góc MN
=> \(\Delta\)AHM = \(\Delta\)AHN (2 cgv)
=> HM = HN (đpcm)