K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(\frac{3}{4}-P=\frac{1}{4}\Sigma_{cyc}\frac{\left(a-b\right)^2}{\left(2a+b+c\right)\left(2b+c+a\right)}\ge0\)

Vậy \(P\le\frac{3}{4}\)

Cách 2: \(P=\Sigma_{cyc}\frac{a}{2a+b+c}\le\Sigma_{cyc}\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)=\frac{3}{4}\)

10 tháng 10 2019

Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)

\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)

\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)

\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)

\(\Rightarrow M\le\frac{3}{2}\)

Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)

14 tháng 4 2020

ko hỉu

13 tháng 4 2020

Ta có : 

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{x+y}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT trên ta có : 

\(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)

\(\Rightarrow A=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(c+a\right)+\left(b+c\right)}\)

\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

\(+\frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{b+c}\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{b+c}\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)\)

\(\Rightarrow A\le\frac{3}{4}\)

Dấu " = " xảy ra khi a=b=c 

13 tháng 4 2020

Ta có: \(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)

\(=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c 

Vậy max A = 3/4 đạt tại a= b = c .

2 tháng 7 2020

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

2 tháng 7 2020

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2

20 tháng 2 2021

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

18 tháng 4 2016

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

11 tháng 10 2019

áp dụng bdt (a2+b2+c2)(x2+y2+z2)\(\ge\left(ax+by+cz\right)^2\) dấu '=" khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

(\(\left(\sqrt{2b+c}\right)^2+\left(\sqrt{2c+a}\right)^2+\left(\sqrt{2a+b}\right)^2\)). P\(\ge\left(a+b+c\right)^2\)

<=> P\(\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{2018}{3}\)=> P min= \(\frac{2018}{3}\)

P min khi \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2b+a}\)<=> a=b=c= \(\frac{2018}{3}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{2a+b+c}=\frac{a}{(a+b)+(a+c)}\leq \frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\frac{b}{2b+c+a}\leq \frac{b}{4}\left(\frac{1}{b+c}+\frac{1}{b+a}\right)\)

\(\frac{c}{2c+a+b}\leq \frac{c}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)

Cộng theo vế và rút gọn ta được:

\(C\leq \frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)

Vậy $C_{\max}=\frac{3}{4}$ khi $a=b=c$