Cho tam giác ABC, trên tia BA lấy M, trên tia đối CA lấy N sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố dịnh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao toàn hỏi câu hóc búa zậy!!!!! (Mà hông có hóc búa thì cũng chẳng rảnh của nợ ghi ra!!!!!Chắc zậy đó?!!!!hì hì.....)
Gọi E là giao điểm các đường trung trực của MN và BC.
Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).
Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).
Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).
Lại có BM = CN và AB = CD nên AM = ND.
Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)
\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).
Suy ra E thuộc đường trung trực của MN.
Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.
sao ko đổi tên thành' Ngọc Tự Làm :))