K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

A B C D H E

Cm: a) Xét t/giác ABH và t/giác EBH

có: \(\widehat{ABH}=\widehat{EBH}\) (gt)

 BH : chung

 \(\widehat{BHA}=\widehat{BHE}=90^0\) (gt)

=> t/giác ABH = t/giác EBH (g.c.g)

=> AB = EB (2 cạnh t/ứng)

=> t/giác ABE cân tại B

mà \(\widehat{B}=60^0\)

=> t/giác ABE đều

b) Ta có: t/giác ABH = t/giác EBH (cmt)

=> AH = HE (2 cạnh t/ứng)

=> H là trung điểm của AE

Xét t/giác AHD và t/giác EHD

có: AH = EH (gt)

  HD : chung

 \(\widehat{AHD}=\widehat{EHA}=90^0\)  (gt)

=> t/giác AHD = t/giác EHD (c.g.c)

=> AD = DE (2 cạnh t/ứng)

=> t/giác ADE cân tại D

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2 [ do AE là pg  góc BAH [ GT ]

AE là cạnh chung

=>  Tg ABE = tg AHE [ cạnh huyền - góc nhọn]

b, Ta có tg ABC vuông tại B [ GT]

=>  BAC + ACB = 90 độ [ Tc tgv ]

hay 60 độ + 

 

 

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

3 tháng 5 2017

A B C D E K H M

a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.

b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)

Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.

c. Ta thấy  tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)

nên AC = DK.

d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)

Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)

Vậy \(\widehat{AME}=\widehat{AEM}\)

Vậy tam giác AME cân tại A.

1: Xét ΔABE có 

BO là đường cao

BO là đường phân giác

Do đó: ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

2: Xét ΔEBD và ΔABD có 

BA=BE

\(\widehat{EBD}=\widehat{ABD}\)

BD chung

Do đó: ΔEBD=ΔABD

Suy ra: DE=DA

hay ΔDEA cân tại D(1)

\(\widehat{CEA}=180^0-60^0=120^0\)

\(\widehat{C}=180^0-105^0-60^0=15^0\)

=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)

Từ (1) và (2) suy ra ΔDEA vuông cân tại D