119=88
145=41
179=82
139=86
169=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{3}{119}+\dfrac{6}{119}+\dfrac{9}{119}+...+\dfrac{102}{119}\)
\(=\dfrac{3+6+9+...+102}{119}\)
\(=\dfrac{3\times\left(1+2+3+...+34\right)}{119}\)
Ta đi tính tổng \(S=1+2+3+...+34\)
Số các số hạng là 34, như thế \(S=\dfrac{34\times\left(34+1\right)}{2}=595\)
Do đó \(P=\dfrac{3\times595}{119}=15\)
\(119H=\frac{119\left(119^{209}+1\right)}{119^{210}+1}=\frac{119^{210}+119}{119^{210}+1}=1+\frac{118}{119^{210}}\)
\(119K=\frac{119\left(119^{210}+1\right)}{119^{211}+1}=\frac{119^{211}+119}{119^{211}+1}=1+\frac{118}{119^{211}+1}\)
Vì 119211+1>119210+1 nên \(\frac{118}{119^{211}+1}< \frac{118}{119^{210}+1}\)
\(=>119K< 119H\)
\(=>K< H\)
Ta có:
\(119\equiv1\left(mod2\right)\Rightarrow119^{69^{220}}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\Rightarrow69^{220^{119}}\equiv-1\left(mod2\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{199}}\equiv0+1+\left(-1\right)\left(mod2\right)\)
hay \(A⋮2\left(1\right)\)
\(119\equiv-1\left(mod3\right)\Rightarrow119^{69^{220}}\equiv-1\left(mod3\right)\)
\(69\equiv0\left(mod3\right)\Rightarrow69^{220^{119}}\equiv0\left(mod3\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv1+\left(-1\right)+0\left(mod3\right)\)
hay \(A⋮3\left(2\right)\)
\(119\equiv0\left(mod17\right)\Rightarrow119^{69^{220}}\equiv0\left(mod17\right)\)
\(69\equiv1\left(mod17\right)\Rightarrow69^{220^{119}}\equiv1\left(mod17\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv-1+0+1\left(mod17\right)\)
hay \(A⋮17\left(3\right)\)
Từ (1); (2); (3), do 2; 3; 17 nguyên tố cùng nhau từng đội một nên
\(A⋮2.3.17=102\left(đpcm\right)\)
1=5
2=10
3=15
4=20
5=1
10=2
15=3
20=4