Tìm số tự nhiên n nhỏ nhất (khác 0) sao cho khi chia n cho 5/4 và chia n cho 6/5 ta đều được kết quả là số tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì khi chia n cho \(\dfrac{6}{7}\) và chia n cho \(\dfrac{3}{4}\) ta đều đc kết quả là số tự nhiên nên ta có:
n ⋮ \(\dfrac{6}{7}\)
n ⋮ \(\dfrac{3}{4}\) ⇒n ∈ BCNN(6;3)
n nhỏ nhất
6=2.3
3=3
⇒BCNN(6;3)=2.3=6
Vậy số tự nhiên n khác 0 nhỏ nhất là 6.
Chúc bạn học tốt!
theo bài ra , ta có :
- a : \(\dfrac{6}{7}\) = \(\dfrac{7n}{6}\) \(\in\) N \(\Rightarrow\) 7n chia hết cho 6 .
Mà ƯCLN ( 7 ; 6 ) = 1 \(\Rightarrow\) n chia hết cho 6 . ( 1 )
- n : \(\dfrac{3}{4}\) = \(\dfrac{4n}{3}\) \(\in\) N \(\Rightarrow\) 4n chia hết cho 3 . ( 2 )
Mà ƯCLN ( 4 ; 3 ) = 1 \(\Rightarrow\) n chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\) n \(\in\) BC ( 6 ; 3 ) .
Mà n nhỏ nhất \(\Rightarrow\) n = BCNN ( 6 ; 3 ) = 6 .
Vậy số cần tìm là 6 .
Theo đề bài ta có : a/(11/18) = a*(18/11) thuộc N suy ra 18*a chia hết cho 11.
Lại có : a/(25/6) = a*(6/25) thuộc N suy ra 6*a chia hết cho 25.
Như vậy, a là bội chung của 11 và 25 nhưng để a nhỏ nhất thì a = BCNN (11, 25) = 275.
Vậy số cần tìm là 275 bạn nhé!
Chúc bạn học tốt!
Theo bài ra, ta có:
+a : \(\frac{6}{7}\) =\(\frac{7a}{6}\) thuộc N => 7a chia hết cho 6
Mà UCLN(7,6)=1 => a chia hết cho 6 (1)
+a : \(\frac{10}{11}\) = \(\frac{11a}{10}\) thuộc N => 11a chia hết cho 10
Mà UCLN(11, 10) =1 => a chia hết cho 10 (2)
Từ (1) và (2) => a thuộc BC(10,6)
Mà a nhỏ nhất => a =BCNN(10,6) => a =30
Vậy số cần tìm là 30
k cho mình nha
n = 30 nha bạn