Cho a b thoa man 2a+b=2. Chung minh\(ab\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Ta có: \(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)
\(=1-3ab+ab=1-2ab=1-2\left(1-b\right)b\)
\(=1-2b+2b^2=2\left(b^2-b+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b \(=\frac{1}{2}\)
Áp dụng bđt cô - si, ta được:
\(2=2a+b\ge2\sqrt{2ab}\)
\(\Rightarrow\sqrt{ab}\le\frac{2}{2\sqrt{2}}\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" \(\Leftrightarrow\) \(a=\frac{1}{2};b=1\)
Áp dụng BĐT phụ thường gặp \(xy\le\frac{\left(x+y\right)^2}{4}\)
\(2ab\le\frac{\left(2a+b\right)^2}{4}=\frac{4}{4}=1\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=\frac{1}{2};b=1\)