cho hình vuông ABCD có AB=a cố định.Gọi M là một điểm di động trên đường chéo AC.Kẻ ME vuông góc với BC tại F.HÃy xác định vijtris điểm M trên đường chéo AC sao cho diện tích tam giác DEF nhỏ nhất. tính giá trị nhỏ nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AE = x thì BE = a-x
Ta có : \(S_{DEF}=S_{ABCD}-S_{ADE}-S_{BEF}-S_{DEC}\)
\(=a^2-\frac{ax}{2}-\frac{x\left(a-x\right)}{2}-\frac{a\left(a-x\right)}{2}\)
\(=\frac{a^2-ax+x^2}{2}=\frac{1}{2}\left[\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{4}\right]\)
\(=\frac{1}{2}\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{8}\ge\frac{3a^2}{8}\)
Dấu "=" xảy ra khi \(x=\frac{a}{2}\Rightarrow\hept{\begin{cases}AE=EB\\BF=FC\end{cases}\Rightarrow}\)M là trung điểm của AC hay M là giao điểm của AC và BD thì diện tích tam giác DEF đạt giá trị nhỏ nhất bằng \(\frac{3a^2}{8}\)
bn vào câu hỏi tuong tự có đó
cảm ơn bạn