K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

Ta có a /b = x/y = a +x / b+ y
=> x chia hết cho a ; y chia hết cho b
x/y = cx / cy thì a/b = a+ x / b+ y ( c là một chữ số bất kì )

6 tháng 9 2021

Đề không cho số liệu à bạn? 

7 tháng 2 2019

Goị d=(n-1,n^2)

Ta có:

(n-1)^2 chia hết cho d

=> n^2-2n+1 chia hết cho d

=> 2n-1 chia hết cho d=>2n-1-2(n-1) chia hết cho d

=> 1 chia hết cho d=>d=1 

Vậy: P/S: n-1/n^2 là P/S tối giản

b)x/-9=15/y=1/3=-3/-9=15/45

=> x=-3;y=45

7 tháng 2 2019

\(\frac{x}{-9}=\frac{15}{y}=\frac{1}{3}\)

Ta có :

+) \(\frac{x}{-9}=\frac{1}{3}\)

\(\Rightarrow x=\frac{\left(-9\right).1}{3}\)

\(\Rightarrow x=-3\)

+) \(\frac{15}{y}=\frac{1}{3}\)

\(\Rightarrow y=15.3\)

\(\Rightarrow y=45\)

Vậy x=-3 và y=45

\(a.x=1;y=9\)

\(b. (x-6). (y+2)=7\)

Ta lập bảng :

\(x-6\)\(1\)\(-1\)\(7\)\(-7\)
\(y+2\)\(7\)\(-7\)\(1\)\(-1\)
\(x \)\(7\)\(5\)\(13\)\(-1\)
\(y\)\(5\)\(-9\)\(-1\)\(-3\)

\(Vậy :..........\)

2 tháng 3 2020

a) Vì x, y nguyên mà x.y = 9 nên x, y thuộc Ư(9)

Mà x< y. Ta có bảng sau

x1-9
y9-1

Vậy (x,y) \(\in\){(1;9) , ( -9; -1) }

b) vì x, y nguyên suy ra x-6 , y + 2 nguyên

mà (x-6). ( y+2) =7

nên  (x-6), ( y+2) thuộc Ư(7) .Ta lập bảng như sau

x-61-17-7
y+27-71-1
x7513-1
y5-9-1-3

Tự kết luận nhé

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0