Cho phân số a/b . Tìm các số nguyên x, y sao cho (a+x)/(b+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a /b = x/y = a +x / b+ y
=> x chia hết cho a ; y chia hết cho b
x/y = cx / cy thì a/b = a+ x / b+ y ( c là một chữ số bất kì )
Goị d=(n-1,n^2)
Ta có:
(n-1)^2 chia hết cho d
=> n^2-2n+1 chia hết cho d
=> 2n-1 chia hết cho d=>2n-1-2(n-1) chia hết cho d
=> 1 chia hết cho d=>d=1
Vậy: P/S: n-1/n^2 là P/S tối giản
b)x/-9=15/y=1/3=-3/-9=15/45
=> x=-3;y=45
\(\frac{x}{-9}=\frac{15}{y}=\frac{1}{3}\)
Ta có :
+) \(\frac{x}{-9}=\frac{1}{3}\)
\(\Rightarrow x=\frac{\left(-9\right).1}{3}\)
\(\Rightarrow x=-3\)
+) \(\frac{15}{y}=\frac{1}{3}\)
\(\Rightarrow y=15.3\)
\(\Rightarrow y=45\)
Vậy x=-3 và y=45
\(a.x=1;y=9\)
\(b. (x-6). (y+2)=7\)
Ta lập bảng :
\(x-6\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(y+2\) | \(7\) | \(-7\) | \(1\) | \(-1\) |
\(x \) | \(7\) | \(5\) | \(13\) | \(-1\) |
\(y\) | \(5\) | \(-9\) | \(-1\) | \(-3\) |
\(Vậy :..........\)
a) Vì x, y nguyên mà x.y = 9 nên x, y thuộc Ư(9)
Mà x< y. Ta có bảng sau
x | 1 | -9 |
y | 9 | -1 |
Vậy (x,y) \(\in\){(1;9) , ( -9; -1) }
b) vì x, y nguyên suy ra x-6 , y + 2 nguyên
mà (x-6). ( y+2) =7
nên (x-6), ( y+2) thuộc Ư(7) .Ta lập bảng như sau
x-6 | 1 | -1 | 7 | -7 |
y+2 | 7 | -7 | 1 | -1 |
x | 7 | 5 | 13 | -1 |
y | 5 | -9 | -1 | -3 |
Tự kết luận nhé