cho tam giác ABC vuông tại A. trên tia đối của tia CA lấy điểm A' sao cho CA' = CA. Trên tia đối của tia CB lấy điểm B' sao cho CB' = CB. Chứng minh: a) góc ABC = A'B'C b) Tính số đo góc B'A'C c) AB = A'B' và AB // A'B'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC và ΔB'A'C có
BC=B'C
\(\widehat{BCA}=\widehat{B'CA'}\)
CA=CA'
Do đó: ΔBAC=ΔB'A'C
Suy ra: \(\widehat{ABC}=\widehat{A'B'C}\)
xét tg ABC và tg EDC có
BC = EC ( gt )
góc BCA = góc DCE ( 2 góc đối đỉnh )
AC = DC
ABC = EDC
suy ra góc BAC = góc CDE = 90 độ
bạn chép tạm nha, những câu còn lại mình đang làm nha
a) Áp dụng định lí tổng 3 góc trong 1 tam giác ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
hay \(90^o+50^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-50^o=40^o\)
b) Xét \(\Delta ABCvà\Delta DECcó\)
AC = DC ( gt )
CB = CE ( gt )
\(\widehat{ECD}=\widehat{BCA}\) ( đối đỉnh )
\(\Rightarrow\Delta ABC=\Delta DEC\) ( c.g.c )
c) \(\Rightarrow\widehat{E}=\widehat{B}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//DE\)
câu d mik chịu nhe !!!
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
Xét ΔBAC và ΔEDC có
CB=CE
\(\widehat{BCA}=\widehat{ECD}\)
CA=CD
Do đó: ΔBAC=ΔEDC
Suy ra: \(\widehat{CDE}=90^0\)
Xét ΔCAB và ΔCDE có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó: ΔCAB=ΔCDE
Suy ra: \(\widehat{CAB}=\widehat{CDE}\)
hay \(\widehat{CDE}=90^0\)