Cho tam giác ABC có H là trực tâm . Gọi E,F,I lần lượt là trung điểm của AH, BH, CH. Nếu tam giác ABC có chu vi là 36cm thì tam giác EFI có chu vi là số nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{BAD}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Ta có: D; E lần lượt là trung điểm của OA; OB
=> DE là đường trung bình của tam giác OAB
=> DE = 1/2 AB
Chứng minh tương tự: DF = 1/2 AC; EF = 1/2 BC
=> DE + DF + EF = 1/2 AB + 1/2 AC + 1/2 BC = 1/2 (AB + AC + BC) = 1/2 . 20 = 10 cm
Tham khảo nha .
Vẽ HD // AC . và HE // AB
Ta có : \(HD//AC\)
và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )
\(\Rightarrow HD\perp BH\)
\(\Rightarrow DB>BH\)
( Cạnh đối diện với góc vuông)
Chứng minh tương tự như trên ta có :
\(EC//DH\)
\(\Rightarrow CH\perp AB\)
\(\Rightarrow CH\perp CE\)
\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)
Mặt khác ta có :
\(HD//AE\)
\(HE//DA\)
\(\Rightarrow\)Tứ giác AEHD là hình bình hành
\(\Rightarrow AD=HE\)
Xét tam giác AEH có :
\(HE+AE>AH\)
\(\Rightarrow AD+AE>AH\)
\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)
\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)
Chứng minh tương tự ta có :
\(AB+BC>AH+BH+CH\)
\(AC+BC>AH+BH+CH\)
Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)
\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)
E,F,I là tđ AH,BH,CH nên \(\frac{EI}{AC}=\frac{FI}{BC}=\frac{EF}{AB}=\frac{EI+FI+EF}{AB+AC+BC}=\frac{1}{2}\)
Mà chu vi ABC là 36 nên chu vi EFI là 18