(x-3)+(x-2)+(x-1)+...+10+11=0
giúp mình nha
giải thích dễ hiểu xíu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
vì ta cần tìm giá trị lớn nhất của biểu thức trên nên ta sẽ tìm giá trị lớn nhất của từng số hạng của biểu thức trên:
-/x-7/ chắc chắn là số âm hoặc 0 vì /x-7/ luôn thuộc N từ đó suy ra giá trị của /x-7/ càng nhỏ thì giá trị của -/x-7/ càng cao,mà giá trị nhỏ nhất của /x-7/=0 nên -/x-7/=0.
-/y+13/ giải thích tương tự như phần trên thì ta đc /y+13/=0 nên -/y+13/=0.(chú ý phần này cũng phải giải thích chứ đừng có lười mà ghi như tui)
từ đó suy ra giá trị lớn nhất của biểu thức là 0+0+1945=1945.vậy giá trị lớn nhât là 1945.
Học tốt!!!
\(\Leftrightarrow\frac{1}{x^2+5x+6}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+x}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x^2+5x+6}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+x}-\frac{3}{10}=0\)
\(\Leftrightarrow-\frac{3\left(x^2+3x-10\right)}{10x\left(x+3\right)}=0\)
\(\Leftrightarrow3\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc\(x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
<=>x(x+3)=10 <=> x2+3x=10 <=> x2+3x-10=0
<=>-(x2-3x+10)=0
<=>x2-3x+10=0
<=>x2-2.x.\(\frac{3}{2}\)+ \(\left(\frac{3}{2}\right)^2+\frac{31}{4}\)=0
<=> \(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)=0
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\) (với mọi x)
=>PT vô nghiệm
2/5 x 1/2 : 1/3 = 2/5 x 1/2 x 3 = 3/5
1/2 x 1/3 + 1/4= 1/6 + 1/4 = 4/24 + 6/24 = 10/24 =5/12
1, \(\left(3x-6\right)\left(2x-10\right)=0\)
\(\Leftrightarrow3x-6=0or2x-10=0\Leftrightarrow x=3orx=5\)
or là từ '' hoặc ''
2, \(7\left(x+5\right)+10=5x-11\)
\(\Leftrightarrow7x+35+10=5x-11\)
\(\Leftrightarrow7x-5x=-11-10-35\)
\(\Leftrightarrow2x=-56\Leftrightarrow x=-28\)
a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).
Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).
Đẳng thức xảy ra khi và chỉ khi x = -1.
Vậy..
b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)
Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt
Xét \(x\ge1\)
Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)
\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)
\(\Leftrightarrow0\le-1\) (vô lí)
Vậy x=0
c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\) (đk: \(1\le x\le3\))
Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt
Xét \(x\ne1\)
Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)
Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)
Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)
Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)
Từ (1) => x-1=0 <=> x=1
Vậy pt có nghiệm duy nhất x=1
Theo bài ra ta có dãy:x+..+10+11+12=12
=>x+..+10+11=12-12=0
Vì 11+10 đã lớn hơn 0 nên để x+..+10+11=0
Thì x<0 từ đó ta có x+..+(-2)+(-1)+0+1+2+..+10+11=0
Nên x+..+(-1)+(-2)=1+1+..+10+11
Suy ra x=-11
12+11+10+...+x-12=0
<=>11+10+...+x=0
<=>x=-11
k nhé mk giả hộ bn đó
Gọi số số hạng vế trái của đẳng thức là : m(m ∈ N*)
Ta có: (11+x-3).m : 2= 0
(11+x-3).m=0
Mà m ∈ N*=> m ≠ 0
=> 11+x-3=0
=> 11+x =0+3
=> 11+x=3
=> x=3-11
=>x= -8
Dễ hiểu nhất rùi đó nha!!!