CMR : các số sau đây nguyên tố cùng nhau :
a) Hai số tự nhiên liên tiếp
b) 2n + 5 và 3n + 7 ( n \(\inℕ\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)
Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)
Mà \(d\) lẻ nên \(d=1\)
Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)
\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)
\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)
a) 2 số đó có dạng a ; a + 1
ĐẶt UCLN(a ; a + 1) = d
a chia hết cho d
a + 1 chia hết cho d
=> [(a + 1) - a] chia hết cho d
1 chia hết cho d => d = 1
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
Tương tự
a) ) Gọi d là ƯC (n, n + 1)=> (n + 1) - n chia hết cho d=> d = 1. Vậy n và n + 1 là hai số nguyên tố cùng nhau.
a ) gọi STN 1 : n ; STN 2 : n+1
Gọi d \(\in\)ƯC (n, n + 1) \(\Rightarrow\)(n + 1) - n \(⋮\)d \(\Rightarrow\)d = 1. Vậy n và n + 1 là hai số nguyên tố cùng nhau.
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
a ) gọi 2 số lẻ liên tiếp là : n + 1 ; n + 3
Ta có : ƯCLN ( n + 1 ; n + 3 ) = 1
Vậy 2 số lẻ liên tiếp là nguyên tố cùng nhau
Câu b tương tự
Lời giải:
a. Gọi $d=ƯCLN(n+2, n+3)$
$\Rightarrow n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d; 3n+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow 2n+3, 3n+5$ nguyên tố cùng nhau.
a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).
Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.
Vậy (2n + 3) – ( 2n + 1) chia hết cho d
Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
Gọi hai số liên tiếp lần lượt là a và a+1
Gọi UCLN(a, a+1)=d
=>a+1 chia hết cho d và a chia hết cho d
=> a+1-a=1 chia hết cho d vậy d=1
=> UCLN(a, a+1)=1
Vậy a và a+1 là hai số nguyên tố cùng nhau
Gọi UCLN của 2n+5 và 3n+7 là d
=> 2n+5 chia hết cho d và 3n+7 chia hết cho d
=> 6n+15 chia hết cho d và 6n+14 chia hết cho d
=> 6n+15-6n-14=1 chia hết cho d
vậy d=1
Thì UCLN(2n+5, 3n+7)=1
=> 2n+5 và 3n+7 là 2 số tự nhiên liên tiếp