K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

hình bạn tự vẽ nhé

từ D kẻ đường thẳng song song với AC và cắt BC tại I

do DI // AE, áp đụng hệ quả định lí ta-lét đc: DM/ME=DI/CE (1)

do DI//AC, áp dụng hệ quả định lí ta-lét =) BD/BA=DI/AC (=) ID/BD = AC/AB (2)

từ (1) và (2) kết hợp với BD=CE =) đpcm

chưa hiểu thì hỏi nhé bn

11 tháng 2 2021

Kẻ DI ║ BC. Áp dụng hệ quả định lý Ta-lét vào ΔABC
⇒AD /AB =AI/AC
⇒DB/AB=IC/AC

⇒IC/DB=AC/AB
Vì MC║DI.  Áp dụng định lý Ta-lét vào ΔDIE
⇒DM/ME=IC/CE
Mà DM=CE ⇒IC/CE=IC/DB
⇒DM/ME=AC/AB

Giải thích các bước giải:

 Kẻ DI ║ BC. Áp dụng hệ quả định lý Ta-lét vào ΔABC
⇒AD /AB =AI/AC
⇒DB/AB=IC/AC

⇒IC/DB=AC/AB
Vì MC║DI.  Áp dụng định lý Ta-lét vào ΔDIE
⇒DM/ME=IC/CE
Mà DM=CE ⇒IC/CE=IC/DB
⇒DM/ME=AC/AB

Ta có: \(\widehat{ABK}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ECB}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABK}=\widehat{ECB}\)

hay \(\widehat{DBK}=\widehat{ECI}\)(đpcm)

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

1 tháng 8 2019

#)Giải :

a) Áp dụng định lí py - ta - go :

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)

b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)

\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)

\(\Rightarrow\Delta BDC\)  cân tại B

1 tháng 8 2019

A C B D E M

Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36

=> AC = 6

b) Xét t/giác ABC và t/giác ABD

có: AB : chung

 \(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)

 AC = AD (gt)

=> t/giác ABC = t/giác ABD (c.g.c)

=> BC = BD (2 cạnh t/ứng)

=> t/giác BDC cân tại B

c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)

                      mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)

                    => \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)

AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)

     mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)

=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)

Từ (1) và (2) => BM = CM

d) Xét t/giác AMB và t/giác EMC

có: AM = ME (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)

 BM = CM (cmt)

=> t/giác AMB = t/giác EMC (c.g.c)

=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)

Tương tự, xét t/giác BME và t/giác CMA 

=> t/giác BME = t/giác CMA (c.g.c)

=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)

Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)

=> \(\widehat{CEM}+\widehat{BEM}=90^0\)

=> \(\widehat{BEC}=90^0\)

2 tháng 1 2017

Hình vẽ:

1/ A B C D E O

2/ Mk vẽ hình bài 2 luôn, bài thì bạn thân iu@Nguyễn Thị Thu An của mik làm rồi!! ^^

A B C D M I N

2 tháng 1 2017

1/ Hình, tự vẽ:

a/ Xét tam giác ABD và tam giác ACE có:

AB = AC (GT)

A: góc chung

góc D = góc E = 900 (GT)

=> tam giác ABD = tam giác ACE

(cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: AB = AC (GT); mà AD = AE (do tam giác ABD = tam giác ACE)

=> BE = CD (1)

góc ABD = góc ACE (do tam giác ABD = tam giác ACE) (2)

góc E = góc D = 900 (3)

Từ (1),(2),(3) => tam giác BEO = tam giác CDO (g.c.g)

c/ Xét tam giác ABO và tam giác ACO có:

AB = AC (GT)

BO = CO (do tam giác BEO = tam giác CDO)

AO: cạnh chung

=> tam giác ABO = tam giác ACO (c.c.c)

=> góc BAO = góc CAO (2 góc tương ứng)

Vậy AO là phân giác góc ABC (đpcm)